Institute of Actuaries of India

Subject CT3 - Probability \& Mathematical Statistics

September 2018 Examination

INDICATIVE SOLUTION

Introduction

The indicative solution has been written by the Examiners with the aim of helping candidates. The solutions given are only indicative. It is realized that there could be other points as valid answers and examiner have given credit for any alternative approach or interpretation which they consider to be reasonable.

Solution 1:

Combined mean $\bar{x}=\left(n_{1} \bar{x}_{1}+n_{2} \bar{x}_{2}\right) /\left(n_{1}+n_{2}\right)$

$$
\begin{aligned}
& =(130.2 \times 28+140.7 \times 15) /(28+15) \\
& =(5756.1) /(43) \\
& =133.9 \text { (lakhs of Rupees) }
\end{aligned}
$$

Using the fact that $\sum x_{i}^{2}=\left(n_{i}-1\right) s_{i}^{2}+n_{i} \bar{x}_{l}^{2} ; i=1,2$ we have, for the combined set

$$
\Sigma x^{2}=\left(27 \times 55.1^{2}+28 \times 130.2^{2}\right)+\left(14 \times 66.2^{2}+15 \times 140.7^{2}\right)=914930.9
$$

Therefore the variance for the combined set

$$
\begin{aligned}
S^{2} & =\frac{914930.9-\frac{5756.1^{2}}{43}}{42} \\
& =144403 / 42 \\
& =3438.7 .
\end{aligned}
$$

Thus, $\mathrm{S}=58.6$ (lakhs of Rupees)

Solution 2:

i) Let Success: = Getting one passenger to go to B from A.
$p=$ Probability [Getting one passenger to go to B from A.] = 0.3;
$q=1-p=0.7$
$k=$ the number of successes (number of passengers going to Town B) $=4$
$X+k=$ the number of trials=15
$X=$ the number of failures $=11$
X follows $N B(k=4, p=0.3)$
$\left[X \sim N B(k, p) \rightarrow P(X=x)=\binom{x+k-1}{x} p^{k} q^{x} ;=x=0,1, \ldots \quad\right]$
Hence, $P(X=11)=\binom{11+4-1}{11} 0.3^{4} 0.7^{11}$

$$
\begin{equation*}
=\frac{14!}{11!3!} 0.3^{4} 0.7^{11}=0.0583 . \tag{3}
\end{equation*}
$$

ii) The average number of persons to be asked in order to get 4 passengers

$$
\begin{align*}
& =E \text { (the number of trials) } \\
& =E(X+k)=E(X)+k=\frac{k q}{p}+k=\frac{k}{p} \\
& =\frac{4 \times 0.7}{0.3}+4=\frac{4}{0.3} \\
& =13.33 \sim 14 \text { persons. } \tag{3}
\end{align*}
$$

Solution 3:

i) Mode: For fixed $\vartheta>0$, the density function $f(x)$ is an increasing function of x.

Thus, $f(x)$ has maximum at the right end point of the interval $[0, \vartheta]$.

Hence the mode of this distribution is ϑ.

Median:

$$
\begin{aligned}
1 / 2 & =\int_{0}^{q} f(x) d x \\
& =\int_{0}^{q} \frac{3 x^{2}}{\theta^{3}} d x=\left[x^{3} / \theta^{3}\right] \text { from } 0 \text { to } q
\end{aligned}
$$

Thus, $1 / 2=q^{3} / \theta^{3}$ implies $q=\frac{\theta}{2^{\frac{1}{3}}}$
ii) Let A be the ratio of the mode of this distribution to the median

$$
A=\text { mode } / \text { median }=\theta \times \frac{2^{\frac{1}{3}}}{\theta}=2^{\frac{1}{3}}=1.2599
$$

$$
\begin{aligned}
P(X<A)= & \int_{0}^{A} f(x) d x \\
& =\int_{0}^{A} 3 x^{2} / \theta^{3} d x \\
& =\left[x^{3} / \theta^{3}\right] \text { from } 0 \text { to } A \\
& =A^{3} / \theta^{3} \\
& = \begin{cases}\frac{2}{\theta^{3}} & \text { if } \theta>2^{1 / 3}=1.2599 \\
1 & \text { otherwise }\end{cases}
\end{aligned}
$$

Solution 4:

The moment generating function of $X_{1}=M_{X_{1}}\left(t_{1}\right)=E\left(e^{t_{1 X_{1}}}\right)$

$$
\begin{aligned}
& =M_{X}\left(t_{1}, 0\right)=\frac{1}{3}\left(1+e^{\left(t_{1}+2 \times 0\right)}+e^{\left(2 t_{1}+0\right)}\right) \\
& =\frac{1}{3}\left(1+e^{t_{1}}+e^{\left.2 t_{1}\right)}\right)
\end{aligned}
$$

The expected value of X_{1} is obtained bytaking first derivative of its MGF and evaluating at $t_{1}=0$.

Thus,

$$
E\left(X_{1}\right)=M_{X_{1}}(0)=\frac{1}{3}\left(1+e^{0}+e^{0)}\right)=1
$$

Similarly using the mgf of $X_{2}, E\left(X_{2}\right)$ is shown to be 1
$E\left(X_{1} X_{2}\right)$ is computed by taking the second cross-partial derivative of joint moment generating function evaluated at $\left(t_{1}, t_{2}\right)=(0,0)$:

$$
\begin{aligned}
\frac{\partial^{2} M_{X_{1}, X_{2}}\left(t_{1}, t_{2}\right)}{\partial t_{1} \partial t_{2}} & =\frac{\partial}{\partial t_{1}}\left(\frac{\partial}{\partial t_{2}}\left(\frac{1}{3}\left[1+\exp \left(t_{1}+2 t_{2}\right)+\exp \left(2 t_{1}+t_{2}\right)\right]\right)\right) \\
& =\frac{\partial}{\partial t_{1}}\left(\frac{1}{3}\left[2 \exp \left(t_{1}+2 t_{2}\right)+\exp \left(2 t_{1}+t_{2}\right)\right]\right) \\
& =\frac{1}{3}\left[2 \exp \left(t_{1}+2 t_{2}\right)+2 \exp \left(2 t_{1}+t_{2}\right)\right]
\end{aligned}
$$

Thus, $E\left(X_{1} X_{2}\right)=\frac{4}{3}$

$$
\operatorname{Cov}\left(X_{1} X_{2}\right)=E\left(X_{1} X_{2}\right)-E\left(X_{1}\right) E\left(X_{2}\right)=\frac{4}{3}-1 \times 1=\frac{1}{3} .=0.33
$$

Solution 5: By transformation, the two normal random variables X_{1} and X_{2}, can be written as
$X_{1}=4 Z_{1}, X_{2}=4 Z_{2}$ where Z_{1} and Z_{2} are standard normal random variables.
Thus, we can write $P\left(X_{1}^{2}+X_{2}^{2}>8\right)=P\left(16 Z_{1}^{2}+16 Z_{2}^{2}>8\right)$

$$
=P\left(Z_{1}^{2}+Z_{2}^{2}>\frac{1}{2}\right)
$$

The sum $Z_{1}{ }^{2}+Z_{2}{ }^{2}$ has chi square distribution with $2 d f$.

Therefore, $P\left(X_{1}^{2}+X_{2}^{2}>8\right)=P\left(Z_{1}^{2}+Z_{2}^{2}>\frac{1}{2}\right)$

$$
\begin{gathered}
=1-P\left(Z_{1}^{2}+Z_{2}^{2}<\frac{1}{2}\right) \\
=1-F_{Y}(1 / 2)
\end{gathered}
$$

where $F_{Y}(1 / 2)$ is the distribution function of a chi square random variable Y with $2 d f$.

Evaluated at $y=1 / 2$, the value of $F_{Y}(1 / 2)=0.2212$.

Solution 6: $\quad X \sim b(2, \theta) ; H_{0}: \theta=\frac{1}{2}$ and $H_{1}: \theta=\frac{3}{4}$
A single observation x is taken; Critical region: $x=1$ or 2
i) Probability of Type I error $=P\left(\right.$ Rejecting $H_{0} \mid H_{0}$ is true $)$

$$
\begin{align*}
& =P\left(x=1 \text { or } x=2 \left\lvert\, \theta=\frac{1}{2}\right.\right) \\
& =\binom{2}{1}\left(\frac{1}{2}\right)^{1}\left(\frac{1}{2}\right)^{1}+\binom{2}{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{0}=\frac{3}{4} \tag{2}
\end{align*}
$$

ii) Probability of Type II error $=P\left(\right.$ Not Rejecting $H_{0} \mid H_{1}$ is true $)$

$$
\begin{equation*}
=P\left(x=0 \left\lvert\, \theta=\frac{3}{4}\right.\right)=\binom{2}{0}\left(\frac{3}{4}\right)^{0}\left(\frac{1}{4}\right)^{2}=\frac{1}{16} \tag{3}
\end{equation*}
$$

Power of the test $=1-P($ Type $I I$ error $)=1-\frac{1}{16}=\frac{15}{16}$.
[5 Marks]

Solution 7:

i) $\quad F_{C}(c)=P(C \leq c)=\sum P(C \leq c / N=n) \cdot P(N=n)$

$$
\begin{aligned}
= & \sum P\left[W_{1}+W_{2}+\cdots+W_{N} \leq c / N=n\right] . P(N=n) \\
= & \sum P\left[W_{1}+W_{2}+\cdots+W_{N} \leq c\right] P(N=n) \\
& =\sum P_{W^{*}}(c) P_{N}(n)\left[W^{*} \text { is the } n \text { fold convolution of } W\right] .
\end{aligned}
$$

ii) Let $M_{C}(t)$ be the mgf of C.

$$
\begin{aligned}
M_{C}(t)=E\left[e^{t c}\right] & =E_{N}\left[E\left(e^{c t} / N\right]\right. \\
= & E_{N}\left[E\left\{e^{\left(W_{1}+W_{2}+\cdots+W_{N}\right) t} / N\right\}\right] \\
= & E_{N}\left[E\left(e^{w_{1} t}\right) E\left(e^{w_{2} t}\right) \ldots E\left(e^{w_{N} t}\right)\right] \\
= & E_{N}\left[E\left(e^{w_{1} t}\right)^{N}\right] \\
= & E_{N}\left[\left(M_{W}(t)\right)^{N}\right] \\
& =E_{N}\left[e^{N \log M_{W}(t)}\right] \\
= & M_{N}\left[\log M_{N}(t)\right] .
\end{aligned}
$$

Hence, $\log M_{C}(t)=\psi_{C}(t)=\psi_{N}\left(\psi_{W}(t)\right)$ which is the cumulant generating function of C.

Solution 8:

i) The likelihood function is $L(\lambda)=\frac{e^{-n \lambda} \lambda^{\sum x_{i}}}{\Pi x_{i!}}$

$$
\Rightarrow \log L(\lambda)=-n \lambda+\left(\Sigma x_{i}\right) \log \lambda+\text { constant. }
$$

$$
\frac{\partial \log L(\lambda)}{\partial \lambda}=0 \text { imples }-n+\frac{\sum x_{i}}{\lambda}=0 \text { giving } \hat{\lambda}=\bar{X} \text {. }
$$

$$
\begin{equation*}
\frac{\partial^{2} \log L(\lambda)}{\partial \lambda^{2}}=-\frac{\sum x_{i}}{\lambda^{2}}<0 \tag{4}
\end{equation*}
$$

Hence, MLE $\widehat{\lambda}=\bar{X}$
ii) $\quad \frac{\partial^{2} \log L(\lambda)}{\partial \lambda^{2}}=-\frac{\sum x_{i}}{\lambda^{2}} \quad$ and $-E\left[\frac{\partial^{2} \log L(\lambda)}{\partial \lambda^{2}}\right]=-E\left[-\frac{\sum x_{i}}{\lambda^{2}}\right]=\frac{n}{\lambda}$

$$
\begin{equation*}
\text { CRLB: } \frac{1}{-E \frac{\partial^{2} \log L(\lambda)}{\partial \lambda^{2}}}=\frac{\lambda}{n} \tag{4}
\end{equation*}
$$

iii)
a) $E[\hat{\lambda}]=E[\bar{X}]=E\left[\frac{\sum X_{i}}{n}\right]=\frac{n \lambda}{n}=\lambda$
$V[\hat{\lambda}]=V[\bar{X}]=V\left[\frac{\sum X_{i}}{n}\right]=\frac{n \lambda}{n^{2}}=\frac{\lambda}{n}$ which is CRLB.
b) The theory of asymptotic distribution of MLEs (and in this case CLT) gives $\hat{\lambda} \sim N\left(\lambda, \frac{\lambda}{n}\right)$ approximately.
iv)
a) Large sample approximate 95% confidence interval for λ is given by

$$
\hat{\lambda} \pm(1.96 \times \operatorname{se}(\widehat{\lambda})
$$

With $n=100$, we get the $95 \% \mathrm{Cl}$ as

$$
\bar{x} \pm\left(1.96 \times \sqrt{\frac{\bar{x}}{100}}\right)
$$

$$
\text { That is, } \quad \bar{x} \pm 0.196 \sqrt{\bar{x}}
$$

b) $\bar{x}=215 / 100=2.15$,

Hence, a confidence interval is $2.15 \pm 0.196(2.15)^{1 / 2}$
i.e. 2.15 ± 0.287
i.e. (1.86, 2.44).

Solution 9:

i) The marginal $p d f$ of Y :

$$
\text { i. } f_{1}(y)=\int_{0}^{y} 2 d x= \begin{cases}2 y & 0<y<1 \tag{1}\\ 0, & \text { otherwise }\end{cases}
$$

ii) The conditional $p d f$ of X given $Y: f(x / y)$ is
i. $f(x / y)=\frac{f(x, y)}{f_{1}(y)}=\left\{\begin{array}{c}\frac{2}{2 y} ; 0<x<y ; 0<y<1 \\ 0 \text { otherwise } .\end{array}\right.$
iii) The conditional mean: $E(X / Y=2)=\int_{0}^{y} x \frac{1}{y} d x=\frac{y}{2}, 0<y<1$

$$
\begin{equation*}
\text { 1. }=\frac{1}{4}=0.25 \quad \text { when } y=\frac{1}{2} \tag{2}
\end{equation*}
$$

iv) The conditional variance: $V(X / Y=y)=E\left(X^{2} / Y=y\right)-(E(X / Y=2))^{2}$

$$
\text { a. } \begin{align*}
E\left(X^{2} / Y=y\right) & =\int_{0}^{y} x^{2} \frac{1}{y} d x=\frac{y^{2}}{3} ; 0<y<1 \\
1 . & =\frac{1}{12}=0.083 \text { when } y=\frac{1}{2} . \tag{3}
\end{align*}
$$

Hence, $\quad V\left(X / Y=\frac{1}{2}\right)=\frac{1}{12}-\left(\frac{1}{4}\right)^{2}=\frac{1}{48}=0.0208$.
[8 Marks]

Solution 10:

i) We use t - test for testing $H_{0}: \mu_{A}=\mu_{B}$ vs $H_{1}: \mu_{A} \neq \mu_{B}$

$$
\begin{gathered}
\text { Data: } \bar{y}_{A}=\frac{56.1}{12}=4.675 ; \bar{y}_{B}=\frac{59.1}{12}=4.925 \\
s_{A}^{2}=\frac{1}{11}\left(266.33-\frac{56.1^{2}}{12}\right)=0.369 ; s_{B}^{2}=\frac{1}{11}\left(297.03-\frac{59.1^{2}}{12}\right)=0.54205
\end{gathered}
$$

Assuming that the two samples are coming from normal populations with same Variance, the pooled variance is computed as:

$$
s_{p}^{2}=\frac{11 s_{A}^{2}+11 s_{B}^{2}}{22}=0.4555
$$

Hence, the t statistic is : $\frac{\bar{y}_{A}-\bar{y}_{B}}{\sqrt{s_{p}^{2}\left(\frac{1}{12}+\frac{1}{12}\right)}}=-0.907$

The critical value of $t_{22}(0.025)=-2.074$
So we do not have enough evidence to reject H_{0} and conclude that the mean delay times are the same for claims associated with the two causes for illness.
ii) The distribution of times can be skewed to the right and we need log transformation for the data to be normally distributed to have a valid test.

Solution 11:

i) $\quad H_{0}: \mu_{A}=\mu_{B}=\mu_{A} ; H_{1}$: at least one pair is not equal.

$$
\text { Data: } \sum y_{A}=27 ; \sum y_{B}=14 ; \sum y_{C}=52 ; \sum y=93 \text { and } \sum y^{2}=865
$$

$$
S S_{T}=865-\frac{93^{2}}{15}=288.4
$$

$$
S S_{B}=\left(27^{2}+14^{2}+52^{2}\right) / 5-\frac{93^{2}}{15}=149.2
$$

ANOVA

Source of variation	SS	df	MSS	F ratio
Between	149.2	2	74.6	$F=\frac{74.6}{11.6}$
Residuals	139.2	12	11.6	$=6.431$
Total	288.4	14		

Thus, the calculated value of F for $(2,12) d f$ is 6.431 .
The critical value of F for $(2,12) d f$ at 5% level is 3.885 . The critical value of F for $(2,12) d f$ at 1% level is 6.927 .

We reject the null hypothesis at 5% level of significance. However, we do not reject the null hypothesis at 1% level of significance.
ii) The $(1-\alpha) \%$ confidence for $\mu_{A}-\mu_{C}$ is:

$$
\left.\overline{(y}_{A}-\bar{y}_{C}\right) \pm t_{n-k, \frac{\alpha}{2}} \widehat{\sigma} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}
$$

The 95% confidence interval for $\mu_{A}-\mu_{C}$:
The value $t_{12}(0.025)=2.179$.
The estimate of σ^{2} from ANOVA table is: 11.6.
The 95% confidence interval for $\mu_{A}-\mu_{C}$ is :

$$
\begin{aligned}
& (5.4-10.4) \pm 2.179\left\{11.6\left(\frac{1}{5}+\frac{1}{5}\right)\right\}^{0.5} \\
& =-5 \pm 4.694=(-9.694,-0.306)
\end{aligned}
$$

Solution 12:

i) Scatter diagram

The scatter diagram indicates that linear regression model can be fitted to the given data.
ii) Linear regression model :

$$
\begin{aligned}
& \quad \sum x_{i}=650 ; \sum y_{i}=670 ; \sum x_{i}^{2}=43144 ; \sum y_{i}^{2}=46524 ; \sum x_{i} y_{i}=44648 \\
& \quad n=10 ; \bar{x}=65, \bar{y}=67, \\
& S_{x y}=\sum x_{i} y_{i}-\frac{\sum x_{i} \sum y_{i}}{n}=44648-\frac{650 \times 670}{10}=1098 \\
& S_{x x}=\sum x_{i}^{2}-\frac{\left(\sum x_{i}\right)^{2}}{n}=894 . \\
& \widehat{\beta_{1}}=\frac{s_{x y}}{S_{x x}}=\frac{1098}{894}=1.2282 \\
& \widehat{\beta_{0}}=\bar{y}-\widehat{\beta_{1}} \bar{x}=67-1.2282 \times 65=-12.833
\end{aligned}
$$

Hence, the fitted regression line is: $\hat{y}=\widehat{\beta_{0}}+\widehat{\beta_{1}} x=-12.833+1.2282 x$.
iii) Estimate of σ^{2} and confidence interval for σ^{2} :

$$
\begin{aligned}
& S_{y y}=\sum y_{i}^{2}-\frac{\left(\sum y_{i}\right)^{2}}{n}=46524-\frac{670^{2}}{10}=1634 . \\
& S S_{R e s}=S_{y y}-\frac{S_{x y}^{2}}{S_{x x}}=1634-\frac{1098^{2}}{894}=285.4497 \\
& \hat{\sigma}^{2}=\frac{S S_{\text {Res }}}{n-2}=\frac{285.4497}{8}=35.6812125=M S_{\text {Res }}
\end{aligned}
$$

The 95% confidence interval for σ^{2} is given by:

$$
\begin{aligned}
& \frac{(n-2) M S_{\text {Res }}}{\chi_{0.025, n-2}^{2}} \leq \sigma^{2} \leq \frac{(n-2) M S_{\text {Res }}}{\chi_{0.0975, n-2}^{2}} \\
& \frac{8 \times 35.6812125}{17.53} \leq \sigma^{2} \leq \frac{8 \times 35.6812125}{2.18} \\
& \text { i.e } \quad \frac{285.4497}{17.53} \leq \sigma^{2} \leq \frac{285.4497}{2.18} \\
& 16.2835 \leq \sigma^{2} \leq 130.9402
\end{aligned}
$$

iv) Testing for $H_{0}: \beta_{1}=0$ vs $H_{1}: \beta_{1} \neq 0$

The test statistic is : $t=\frac{\widehat{\beta_{1}}}{\sqrt{M S_{\text {Res }} / S_{x x}}}=6.148$
The critical value of t at 5% level of significance for $8 d f$ is2.306.
Hence, we reject the hypothesis that $\beta_{1}=0$.
v) Sample correlation coefficient $r=\frac{S_{x y}}{\sqrt{S_{x x} S_{y y}}}=\frac{1098}{\sqrt{894 \times 1634}}=0.9084$

Testing for $H_{0}: \rho=0$ vs $H_{1}: \rho \neq 0$, we have the t statistic

$$
\begin{aligned}
t & =\frac{r \sqrt{n-2}}{\sqrt{1-r^{2}}} \sim t_{n-2} \quad d f \\
& =\frac{0.9084 \sqrt{8}}{\sqrt{1-0.9084^{2}}}=6.1477 \text { with } 8 d f
\end{aligned}
$$

The critical value of t for $8 d f$ is 2.306
Hence, we reject the null hypothesis that $\rho=0$.

