Institute of Actuaries of India

Subject CT1 - Financial Mathematics

September 2017 Examination

INDICATIVE SOLUTION

Introduction

The indicative solution has been written by the Examiners with the aim of helping candidates. The solutions given are only indicative. It is realized that there could be other points as valid answers and examiner have given credit for any alternative approach or interpretation which they consider to be reasonable.

Solution 1:

i) The purchase price:
$1,20,000 * a^{(4)}$ 5®® $@ 12 \%=1,20,000 *\left(i / i^{(4)}\right) * a_{\text {5 }}$
$=1,20,000 *(0.12 / 0.114949) * 3.6048$
$=$ INR 4, 51,581
ii) Taking half year as unit of time and 6% as the ROI.

$$
\begin{aligned}
& 60,000 * a^{(2)}{ }_{10 \text { 욥 }} @ 6 \%=60,000 *\left(\mathrm{i} / \mathrm{i}^{(2)}\right) * \mathrm{a}_{10 \text { ㅂ }} \\
& =60,000 *(0.06 / 0.05912) * 7.36 \\
& =\text { INR 4, 48,127 }
\end{aligned}
$$

iii) Taking quarter as unit of time and 3\% as the ROI.

$$
\begin{array}{rl}
30,000 & * a_{\text {20®® }} @ 3 \%=30,000 * a_{20 ®} \\
& =30,000 * 14.877747 \\
& =\text { INR } 4,46,324
\end{array}
$$

Solution 2:

- Both preference shares and ordinary shares raise money for the issuing company.
- Preference shares are less common than ordinary shares. Assuming that the company makes sufficient profits, they offer a fixed stream of investment income.
- The crucial difference between preference shares and ordinary shares is that preference share dividends are limited to a set amount, which is almost always Paid.
- Preference shareholders rank above ordinary shareholders (both for dividends and, usually, on winding up), and only get voting rights if dividends are unpaid or if there is a matter which directly affects the rights of preference shareholders.
- Preference dividends, like ordinary dividends, are only paid at the directors' discretion, but no ordinary dividend can be paid if there are any outstanding preference dividends.
- For all investors, the expected return on preference shares is likely to be lower than on ordinary shares because the risk of holding preference shares is lower: preference shares rank higher on a winding-up, and the level of income payments is more certain.
[3 Marks]

Solution 3:

i) $\quad v(t)=\exp \left(-\int_{0}{ }^{t} \delta(s) d s\right)$

$$
\begin{aligned}
& v(t)=\exp \left(-\int_{0}{ }^{t} 0.07 d s\right)=\exp (-0.07 t) \quad \text { for } 0 \leq t<4 \\
& v(t)=\exp \left(-\int_{0}{ }^{4} 0.07 d s-\int_{4}{ }^{t} 0.06 d s\right)=\exp (-0.04-0.06 t) \text { for } 4 \leq t<8 \\
& v(t)=\exp \left(-\int_{0}{ }^{4} 0.07 d s-\int_{4}{ }^{8} 0.06 d s-\int_{8}{ }^{t} 0.05 d s\right)=\exp (-0.08-0.04-0.05 t) \\
& v(t)=\exp (-0.12-0.05 t) \text { for } 8 \leq t
\end{aligned}
$$

ii) Accumulated value $=5000^{*} v(3) / v(15)$
$=5000^{*} \exp (-0.21) / \exp (-0.12-0.75)$
$=5000 * \exp (0.66)$
= INR 9673.96
iii) Let $\delta(\mathrm{t})$ be the constant force of interest

5000* $\exp (12 \delta)=5000^{*} \exp (0.66)$
$12 \delta=0.66$
$\delta=0.055$
[2]
iv) $\quad 1 / \mathrm{v}(20)=1 / \exp (-0.12-1)=3.06485=(1+\mathrm{i})^{\wedge} 20$

Where i is the effective annual rate

So $\mathrm{i}=0.0576$
v) Present value
$1000^{*}(1+\mathrm{v}(1)+\mathrm{v}(2)+\ldots \mathrm{v}(9))$
1000* ($1+e(-0.07)+e(-0.14)+e(-0.21)+e(-0.28)+e(-0.34)+e(-0.40)+e(-0.46)+e(-0.52)+e(-0.57))$
$=\operatorname{INR} 7,541.54$

Solution 4:

i) In 10 years' time single premium P is:

$$
\begin{aligned}
& \mathrm{P} \\
& =12,000 a_{1}^{(12)}\left(1+\frac{1.03}{1.06}+\left(\frac{1.03}{1.06}\right)^{2}+\cdots \ldots+\left(\frac{1.03}{1.06}\right)^{14}\right) \\
& =12,000 a_{1}^{(12)}\left(\frac{1-\left(\frac{1.03}{1.06}\right)^{15}}{1-\frac{1.03}{1.06}}\right) \\
& =12,000 \times 0.969067 \times \frac{0.3499146}{0.0283019} \\
& =1,43,774.45
\end{aligned}
$$

ii) $\quad \mathrm{E}\left(1+i_{t}\right)=1.06=e^{\mu+\frac{\sigma^{2}}{2}}$
$\operatorname{Var}\left(1+i_{t}\right)=(0.15)^{2}=e^{2 \mu+\sigma^{2}}\left(e^{\sigma^{2}}-1\right)$

Then $\sigma^{2}=0.01982706$
And $\mu=0.04835538$
$s_{10} \sim \mathrm{LN}(10 * 0.04835538,10 * 0.01982706)$

Let X be the amount to be invested at time 0

$$
\begin{aligned}
& \operatorname{Pr}\left(X s_{10} \geq 1,43,774.45\right)=0.98 \\
& \operatorname{Pr}\left(X s_{10} \geq 1,43,774.45\right)=0.98 \\
& \quad 1-\quad Z\left(\frac{\ln \left(\frac{143774.45}{x}\right)-10 \mu}{\sqrt{10 \sigma^{2}}}\right)=0.02 \\
& \operatorname{Ln}\left(\frac{143774.45}{x}\right)=-2.0537 \times \sqrt{0.1982706}+0.4835538 \\
& X=2,21,219.41
\end{aligned}
$$

iii)

The initial investment needs to be substantially higher than the single premium required in 10 years' time to have a 98% probability of accumulating to the single premium.

The result is explained by the fact that the variance of the interest rate is so high relative to the mean. There is therefore a significant risk that the investment will decrease in value over the next 10 years.

Solution 5:

i) Discounted Mean Term =
$\frac{10 \mathrm{v}^{10}+11 \mathrm{v}^{11}+\cdots \ldots \ldots+20 \mathrm{v}^{20}}{\mathrm{v}^{10}+\mathrm{v}^{11}+\mathrm{v}^{12}+\cdots \ldots+\mathrm{v}^{20}}$
$=\frac{9 a_{11}+(I a)_{11}}{a_{11}} \quad$ at 6%
$=9+\frac{(\mathrm{Ia})_{11}}{\mathrm{a}_{11}}$

$$
=9+\frac{42.7571}{7.8869}
$$

$=14.42$
[3]
ii) First condition PV (assets) $=\mathrm{PV}$ (Liabilities)

$$
\begin{aligned}
& \Rightarrow X v^{10}+Y v^{20}=v^{9} a_{11} \text { at } 6 \% \\
& \Rightarrow X * 0.55839+Y * 0.31180=0.59190 * 7.8869=4.668256
\end{aligned}
$$

Second condition is DMT assets $=$ DMT liabilities

$$
\begin{aligned}
& \Rightarrow \quad \frac{\mathrm{X} * 10 v^{10}+\mathrm{Y} * 20 v^{20}}{\mathrm{X} v^{10}+\mathrm{Y} v^{20}}=14.42 \\
& \Rightarrow \mathrm{X} * 5.5839+\mathrm{Y} * 6.236=14.42 *\left(\mathrm{X} v^{10}+\mathrm{Y} v^{20}\right) \\
& \Rightarrow \mathrm{X} * 5.5839+\mathrm{Y} * 6.236=14.42 * 4.668256=67.3163
\end{aligned}
$$

Solving equations
$Y=6.6176 \quad$ and $\quad X=4.6650$
[5]
iii)

For the third condition to be satisfied, it is necessary for the spread of the assets to exceed the spread of the liabilities.
This appears to be the case given that the liabilities occur in equal annual amounts at durations from 10 years to 20 years, whereas the assets are concentrated in two lumps at the two most extreme durations, 10 years and 20 years.
[10 Marks]

Solution 6:

i) Bond yields are determined by investors' expectations of future short-term interest rates, so that returns from longer-term bonds reflect the returns from making an equivalent series of short-term investments.
ii)
a) Let i_{t} be the spot yield over t years:

One year: yield is 8% therefore $i_{1}=0.08$

Two years: $\left(1+i_{2}\right)^{2}=1.08 \times 1.07$ therefore $i_{2}=0.074988$
Three years: $\left(1+i_{3}\right)^{3}=1.08 \times 1.07 \times 1.06$ therefore $i_{3}=0.06997$
Four years: $\left(1+i_{4}\right)^{4}=1.08 \times 1.07 \times 1.06 \times 1.05$ therefore $i_{4}=0.06494$
$(1 * 4=4)$
b) Price of the bond is, $5\left[(1.08)^{-1}+(1.074988)^{-2}+(1.06997)^{-3}\right]+105(1.06494)^{-4}$
$=13.03822+81.6373=94.67552$
(1)

Find gross redemption yield from $94.67552=5 a_{4}+100 v^{4}$

At 7\%; $a_{4}=3.3872 ; v^{4}=0.76290$ gives RHS $=93.226$
At 6\%; $a_{4}=3.4651 ; v^{4}=0.79209$ gives $\mathrm{RHS}=96.5345$

Interpolate between 6\% and 7\%. $i=0.06562$
iii) Present value of the dividend is $4 v$ calculated at 8% per annum effective is 3.70370 . Therefore forward price is

$$
\begin{equation*}
F=(400-3.70370) \times 1.08 \times 1.07=457.96 \tag{2}
\end{equation*}
$$

Solution 7:

i) Working in lacs

Present value of the liability $=9+12 \times v \times \overline{a_{1}}$ at 9%

$$
\begin{aligned}
& =9+12 v \frac{i}{\delta} \mathrm{v}=9+12 * 0.91743^{2} * 1.044354 \\
& =19.54811
\end{aligned}
$$

The assets upto ($\mathrm{t}+2$) years from $1^{\text {st }}$ January 2016 will have present value $=5 v^{2} a_{t}^{(2)}$
$=5 v^{2} \frac{i}{i^{(2)}} a_{t}=5 \times 0.84168 \times 1.022015 \times a_{t}=4.301048 a_{t}$

With $t=6, P V=4.301048 \times 4.4859=19.2941$

The next payment of 2.5 lacs at $t=6.5$ is made at time 8.5 and has present value $=2.5 \times v^{8.5}=1.2018$

This would make PV of assets > PV of liabilities (19.5)
\Rightarrow Discounted payback period $=8.5$ years.
ii) The income of the development is received later than the costs are incurred. Hence an increase in the rate of interest will reduce the present value of the income more than the present value of the outgo. Hence the DPP will increase.

Solution 8:

The current price of stock:


```
    = 8000*9.1079*1.017204+100000*0.36245
    = INR 1,10,361
```

The forward can be calculated using the equation:
$\mathrm{K}=(\mathrm{P}-\mathrm{I}) \exp (\delta \mathrm{T})$
Where I is the PV, at the risk free rate, of the coupon payments due during the term of the forward contract and δ is the risk- free force of interest. Therefore,

Solution 9:

i) Working in monetary values at $\mathrm{t}=0$
$25,000=10,000\left(v \frac{170.7}{183.3}+v^{2} \frac{170.7}{191.0}+v^{3} \frac{170.7}{200.9}\right)$
Where $v=\frac{1}{\left(1+i^{\prime}\right)}$ where i^{\prime} is the real rate of return

$$
\text { At 4\% RHS = } 24770.94
$$

$$
\text { At } 3 \% \text { RHS }=25241.25
$$

By interpolation $\mathrm{i}^{\prime}=3.5 \%$
ii)

$$
\begin{aligned}
& 25,000=10,000 a_{3} \text { at } \mathrm{i} \% \\
& \Rightarrow \quad a_{\text {3ө8 }}=2.5 \\
& \Rightarrow \quad \text { Hence } \mathrm{i}=9.7 \%
\end{aligned}
$$

Solution 10:
i) IRR:

Sheep rearing
The IRR i is the solution of the equation of value

$$
\begin{aligned}
& \mathrm{K}=\left(1,10,361-8,000 * a^{(2)}{ }_{\text {бвв }}\right. \text { प } \\
& \mathrm{K}=(1,10,361-8,000 * 4.96352) * 1.4333=1,01,270
\end{aligned}
$$

$20,000=1,100 * a_{\text {20远 }}+20000 * v \wedge^{20}$
@ 5\%, RHS = 21,246.22
@ 6\%, RHS = 18,853.00

By Interpolation, $\mathrm{i}=5.5 \%$

Goat breeding
The IRR i is the solution of the equation of value
$20,000=900 * a_{\text {20®日 }}+25000 * v^{\wedge 20}$
@ 5\%, RHS = 20,638.22
@ 5.5\%, RHS = 19,323.57

By Interpolation, $\mathrm{i}=5.24 \%$

Forestry

The IRR i is the solution of the equation of value
$57,300=20,000 *(1+i) \wedge 20$
@ 5\%, RHS = 53,065.95
@ 6\%, RHS = 64,142.71

By Interpolation, $\mathrm{i}=5.40 \%$

ii) Profitability of each of the project:

Sheep rearing

The 'surplus' income after paying the interest of the bank is INR 100 per annum,
So the profit is 100^{*} s 20룔 @ 4\%
$=100 * 29.7781$
$=2,978.81$

Hence the profit at the end of the project is $20,000+2,978.81-20,000=I N R 2,978.81$

Goat breeding

A further INR 100 must be borrowed annually in arrear for 20 years, And these loans grow at 5\% p.a. compound

The total indebtedness at 20 years time is thus
$20,000+100^{*}$ 20ㄹํㄹ @ 5\%
$=20,000+100 * 33.06595$
$=23,306.59$

Hence the profit at the end of the project is $25000-23,306.59$
= INR 1,693.40

Forestry

After 20 years, the original debt of INR 20,000 will have grown to $=20,000 *(1.05){ }^{\wedge} 20=$ INR 53,065.95

The profit after 20 years is
$=57,300-53,066=\operatorname{INR} 4,234$

Hence the highest profit is obtained from forestry

Solution 11:

The repayments under each of the three loans can be found as follows:

Loan 1: P1 $a_{\text {10®® }} @ 10 \%=6,00,000, \quad$ P1 = 6,00,000/6.1446 $=$ INR $97,647.24$

Loan 2: P2 $a_{\text {5回 } @ 9.2025 \%}=250000^{*} v^{\wedge}{ }^{0.5}, ~ P 2=2,50,000 /\left(1.045^{*} 3.8693\right)=$ INR 61,829

Loan 3: P3 $a_{\text {5®冋 }} @ 9.5 \%=150,000, \quad$ P3 = 1,50,000/3.8397 $=$ INR 39,065.55

The amount of capital outstanding under each of the three loans on 1 January, 2017 are:

Loan 1: P1 $a_{\text {5®® }} @ 10 \%=97,647.24$ * 3.7908 = INR 3,70,159.86

Loan 2: P2 $a_{\text {2®อ }} @ 9.2025 \%=61,829$ * $1.7543=$ INR 1,08,466.61

Loan 3: P3 * $(1+\mathrm{i})^{\wedge} 0.5 a_{\text {5®® }} @ 9.5 \%=1.095^{\wedge 0.5} * 1,50,000=$ INR 1,56,963.37
The total capital outstanding is: $3,70,159.86+1,08,466.61+1,56,963.37=$ INR $6,35,589.84$

The annual repayments under the new loan can be found from the equation of value:
P * $a_{\text {10를 }} @ 8 \%=6,35,589.84$;
$\Rightarrow \quad P=6,35,589.84 / 6.7101=I N R 94,721.36$

