Institute of Actuaries of India

Subject CS1-Actuarial Statistics (Paper B)

March 2022 Examination

INDICATIVE SOLUTION

Introduction

The indicative solution has been written by the Examiners with the aim of helping candidates. The solutions given are only indicative. It is realized that there could be other points as valid answers and examiner have given credit for any alternative approach or interpretation which they consider to be reasonable.

Solution 1:

i)
$x=c(5,10,15,20,25,30,35,40,45,50,55,60)$
$y=c(15,12,25,23,35,36,33,38,43,45,50,53)$
$>$ meanx $=$ mean (x)
$>$ meany $=$ mean (y)
> meanx
[1] 32.5
> meany
[1] 34
$>x_{-}$sq=x*x
> x_sq
[1] 25100225400625900122516002025250030253600
$>y$ _sq=y*y
$>x y=x * y$
$>x y$
[1] 751203754608751080115515201935225027503180

```
> sumx_sq=sum(x_sq)
> sumy_sq=sum(y_sq)
> sumxy=sum(xy)
> sumx_sq
[1] 16250
> sumy_sq
[1] 15760
> sumxy
[1] }1577
```

$>$ Sxx=Sumx_sq-12*meanx^2
$>$ Sxx
[1] 3575
> Sxy=sumxy-12* meanx*meany
> Sxy
[1] 2515
> Syy=sumy_sq-12*meany^2
> Syy
[1] 1888
ii)

```
> beta=Sxy/Sxx
> beta
[1] 0.7034965
```

> alpha=meany-beta*meanx
> alpha
[1] 11.13636

```
> sigmasq=(1/(12-2))*(Syy-Sxy^2/Sxx)
> sigmasq
[1] 11.87063
```


iii)

```
> expectedy=alpha+beta*x
> expectedy
```

[1] 14.6538518 .1713321 .6888125 .2062928 .7237832 .2412635 .7587439 .2762242 .79371
46.3111949 .8286753 .34615

iv)

> e=y-alpha-beta*x
$>e$
[1] 0.3461538-6.1713287 3.3111888-2.2062937 6.2762238 3.7587413
[7] -2.7587413-1.2762238 0.2062937-1.3111888 0.1713287-0.3461538

```
> meane=mean(e)
```

> meane
[1] -1.702344e-15
> var(e)
[1] 10.79148

Mean value of residuals is close to zero as expected as $\mathrm{e}^{\sim} \mathrm{N}(0$, sigma^2)
(Otherwise, "e" could be calculated as e = y-expectedy)

Var of e is slightly lower than sigma square as calculated in part ii - as denominator is not adjusted When denominator of 10 gets used instead of 11 we see that var of residuals = sigma^2
$>\operatorname{var}(\mathrm{e}) * 11 / 10$
[1] 11.87063

v) 95% confidence interval for beta

Ho: Beta is zero (i.e. no linear relationship between x and y)
H 1 : Beta is not equal to zero
(Beta_cap-0)/ sqrt(sigma^2_cap/ Sxx) ~ t_{10}

We use t distribution with $n-2$ i.e. 10 degrees of freedom
$>q t(p=0.025$, lower.tail $=T, d f=10)$
[1] -2.228139
Being symmetric distribution, 97.5% point would be 2.228139
> sqrt(sigmasq/Sxx)
[1] 0.0576234

Hence, endpoints of Cl would be
$>$ end1=beta+sqrt(sigmasq/Sxx)*qt($p=0.025$, lower.tail $=T, d f=10$)
$>$ end1
[1] 0.5751036

```
> end2=beta-sqrt(sigmasq/Sxx)*qt(p=0.025, lower.tail = T, df=10)
> end2
[1] 0.8318894
```

Hence 95\% Confidence interval for beta is (0.5751, 0.8319)

As confidence interval for beta does not include zero, we can reject null hypothesis (viz. beta=0) and Hence, can conclude that beta is not equal to zero at 5\% level.

95\% Cl for sigma^2

(n-2)sigmacap^2/ sigma^2 ~ Chi sq distribution with 10 degrees of freedom

Tabulated values of Chi square having 10 df can be obtained as
$>$ chitenend1=qchisq(df=10, $p=0.025$)
$>$ chitenend2=qchisq(df=10,p=0.975)
$>$ chitenend1
[1] 3.246973
$>$ chitenend2
[1] 20.48318

End points of Cl would be
> sigmasqend1=(12-2)*sigmasq/chitenend1
$>$ sigmasqend2=(12-2)*sigmasq/chitenend2
> sigmasqend1
[1] 36.55907
> sigmasqend2
[1] 5.795307

Hence 95% Confidence interval for sigma^2 is $(5.795,36.559)$
vi)
$\mathrm{SS}_{\text {тот }}=$ Syy $=1888$ (as calculated in part i)
$S_{\text {REG }}=S x y^{\wedge} 2 / S x x$
> ss_reg=Sxy^2/Sxx
> ss_reg
[1] 1769.294
$S_{\text {RES }}=S S_{\text {Tot }}-S_{\text {REG }}$
> ss_res=Syy-ss_reg
> ss_res
[1] 118.7063
$\mathrm{R}^{\wedge} 2$ denotes the \% of variability explained by the model
$R^{\wedge} 2=S S_{\text {REG }} /\left(S_{\text {REG }}+S S_{\text {RES }}\right)$
> Rsq = ss_reg/(ss_reg+ss_res)
> Rsq
[1] 0.9371259

Model is a good fit as 93.7% of the variability is explained by the model.

```
> adj_Rsq = 1-((12-1)/(12-1-1))*(1-Rsq)
> adj_Rsq
[1] 0.9308385
```

Adjusted $R^{\wedge} 2$ (93.08%) is lower than $R^{\wedge} 2(93.71 \%)$ as adjusted R square penalises for extra predictors and
hence is better suited to assess the adequacy of the model (or for comparison between models) compared to just using $\mathrm{R}^{\wedge} 2$ for model comparison as
$\mathrm{R}^{\wedge} 2$ cannot decrease on addition of more explanatory variables which can be undesirable (as it may promote too many explanatory variables though not adding significant improvement in the predicted value)

vii)

using results from earlier parts mean predicted response is calculated (using regression line equation)
> Emean52=alpha+beta*52
> Emean52
[1] 47.71818
Expected value of mean predicted response is 47.718 when $x=52$
varofmean52=((1/12)+(52-meanx) $\left.)^{\wedge} 2 / S x x\right)^{*}$ sigmasq
> varofmean52
[1] 2.251822
$>$ mean52end1=Emean52+qt(p=0.025, lower.tail $=T, d f=10)$ *sqrt(varofmean52)
> mean52end2=Emean52-qt(0.025,lower.tail = T, df=10)*sqrt(varofmean52)
> mean52end1
[1] 44.37462
> mean52end2
[1] 51.06174

Hence 95\% confidence interval for the mean predicted response is $(44.3746,51.0617)$

Solution 2:

i)
library(dplyr)

```
> str(policydata)
```

'data.frame': 650 obs. of 4 variables:
\$ Policy : int 12345678910 ...
\$ Claim : int 0002100000 ...
\$ Cust_Exp: chr "SA" "SA" "SA" "DS" ...
\$ Amount : int 000526015617400000 ...
$>$
> \#a
> table(policydata\$Claim)

0123
458149367
> \#Alternative, if dplyr installed
> \#count(policydata,Claim)
> print("458 Policies don't have any claim")
[1] "458 Policies don't have any claim"
ii)
> hist(policydata\$Claim)
> \#poisson and negative binomial distribution

Histogram of policydata\$Claim

iii)
> poisson.test(x=sum(policydata\$Claim), T=length(policydata\$Policy))

Exact Poisson test
data: sum(policydata\$Claim) time base: length(policydata\$Policy)
number of events $=242$, time base $=650, \mathrm{p}$-value $<2.2 \mathrm{e}-16$
alternative hypothesis: true event rate is not equal to 1
95 percent confidence interval:
0.32687390 .4222903
sample estimates:
event rate
0.3723077
> \#0.35 is more suitable value of parameter since it lies between confidence interval.
iv)
> |x=log(policydata\$Amount[policydata\$Amount>0])
> \#Alternative, if dplyr installed
> \#|x=log(filter(policydata,Amount >0)\$Amount)
$>$ mean(lx)
[1] 9.835205
> median(lx)
[1] 9.774659
$>\operatorname{sd}(1 x)^{\wedge} 2$
[1] 3.425705

v)

$>\operatorname{par}($ mfrow $=c(2,1))$
$>$ hist(lx)
> qqnorm(lx)
> qqline(lx)

Histogram of lx

vi)
> \# From Histogram and QQPlot it seems log amount closely follows normal distribution.
> \# To add, the mean and median are very close indicating symmtery. One of the characterstics of Z.
> \# Hence,Claim amount might be following log normal distribution.

vii)

> \#Null Hypothesis : mu = 10, alternate hypothesis mu >10
> t.test(lx,mu=10,alternative="greater", conf.level = .9)

One Sample t-test

data: lx
$\mathrm{t}=-1.2337, \mathrm{df}=191, \mathrm{p}$-value $=0.8906$
alternative hypothesis: true mean is greater than 10
90 percent confidence interval:
9.663428 Inf
sample estimates:
mean of x

9.835205

> \#Given p-value greater than 10\% null hypothesis can not be rejected.

viii)

> ct=table(policydata\$Claim,policydata\$Cust_Exp)
> ct

DS SA VD VS
0633062069
13690914
2161460
33310
> \# Null Hypothesis: No association between Policyholder's experience and Claim
> chisq.test(ct)

Pearson's Chi-squared test
data: ct
X-squared $=47.749, d f=9, p$-value $=2.846 e-07$

Warning message:
In chisq.test(ct) : Chi-squared approximation may be incorrect

ix)

> \#There are cells where the number of observations are less than 5.

x)

> policydata\$Claim2=ifelse(policydata\$Claim >2,2,policydata\$Claim)
> policydata\$Cust_Exp2=ifelse(policydata\$Cust_Exp \%in\% c("DS","VD"),"DS","SA")
> ct2=table(policydata\$Claim2,policydata\$Cust_Exp2)
$>$ ct2

DS SA
083375
145104
22617
> chisq.test(ct2)
Pearson's Chi-squared test
data: ct2
X-squared $=43.514, d f=2, p$-value $=3.557 e-10$

[^0]xi)
> summary(policydata\$Amount)

```
Min. 1st Qu. Median Mean 3rd Qu. Max.
    0 0 0 29501 3232 1848069
> policydata$large= ifelse(policydata$Amount >100000,1,0)
> x = sum(policydata$large)
> n = length(policydata$Amount[policydata$Amount>0])
> #Alternative, if dplyr installed
> #n = length(filter(policydata,Amount >0)$Amount)
> binom.test(x,n)
    Exact binomial test
data: x and n
number of successes = 35, number of trials = 192, p-value < 2.2e-16
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.1303796 0.2442928
sample estimates:
probability of success
    0.1822917
>
> # Since upper bound of c.i is less that .25, it is unlikely that more
that
> #25% claims are large
```


Solution 3:

\# Sample mean and variance

Motorclaim = read.csv("Motorclaim.CSV")
Mean_Claim<-mean(Motorclaim\$CLAIM)
Var_Claim<-var(Motorclaim\$CLAIM)
i)
\# Method of moments estimate

\# Normal Distribution

Normal_mu <- Mean_Claim
Normal_sigma <- sqrt(Var_Claim)

Normal_mu
[1] 6357.314

Normal_sigma
[1] 6986.523

\# Log Normal Distribution

LogNormal_sigma<- sqrt(log(1+Var_Claim/Mean_Claim^2))
LogNormal_mu<-log(Mean_Claim)-LogNormal_sigma^2/2

```
LogNormal_sigma
[1] 0.8899276
LogNormal_mu
[1] 8.361376
```


\# Exponential Distribution

```
Exp_lamda <-1/Mean_Claim
Exp_lamda
[1] 0.0001572991
```


\# Gamma Distribution

```
Gamma_lamda<-Mean_Claim/Var_Claim
```

Gamma_lamda<-Mean_Claim/Var_Claim
Gamma_alpha<-Gamma_lamda*Mean_Claim
Gamma_lamda
[1] 0.0001302421
Gamma_alpha
[1] 0.82799
ii)
\# Histogram
hist(Motorclaim\$CLAIM,breaks = 35,freq = FALSE)

```

\section*{\#Superimpose Normal distribution}
curve(dnorm(x,mean = Normal_mu,sd = Normal_sigma),from = min(Motorclaim\$CLAIM), to = \(\max (\) Motorclaim\$CLAIM), add = TRUE, col= "blue")

\section*{\#Superimpose Log Normal distribution}
curve(dlnorm(x,meanlog = LogNormal_mu,sdlog = LogNormal_sigma),from =
\(\min (\) Motorclaim\$CLAIM), to \(=\max (\) Motorclaim\$CLAIM), add = TRUE, col= "green")

\section*{\#Superimpose Exponential distribution}
curve(dexp(x,rate \(=\) Exp_lamda),from \(=\min (\) Motorclaim\$CLAIM), to \(=\max (\) Motorclaim\$CLAIM), add
= TRUE, col= "red")

\section*{\#Superimpose Gamma distribution}
curve(dgamma(x,shape = Gamma_alpha,rate = Gamma_lamda),from \(=\min (\) Motorclaim\$CLAIM), to \(=\max (\) Motorclaim\$CLAIM), add = TRUE, col= "yellow")
legend("topright",legend = c("Normal", "Lognormal", "Exponential", "Gamma"),Ity = 1, col = c("blue","green","red","yellow"))

\section*{Histogram of Motorclaim\$CLAIM}

(8)
iii)

\section*{\# Quantiles}

\section*{\# Actual Claim Data}
quantile(Motorclaim\$CLAIM,c(0.05,0.25,0.5,0.75,0.95))
5\% 25\% 50\% 75\% 95\%
1324.5611934 .8763631 .0707870 .02821246 .913

\section*{\# Normal Distribution}
qnorm(c(0.05,0.25,0.5,0.75,0.95),mean = Normal_mu,sd = Normal_sigma)
[1] -5134.494 1644.976 6357.31411069 .65317849 .123

\section*{\# Log Normal Distribution}
qlnorm(c(0.05, 0.25, 0.5,0.75,0.95), meanlog = LogNormal_mu,sdlog = LogNormal_sigma)
[1] 989.87142347 .55264278 .57677798 .001418493 .5327

\section*{\# Exponential Distribution}
qexp(c(0.05,0.25,0.5,0.75,0.95),rate = Exp_lamda)
[1] 326.08761828 .88534406 .55448813 .108919044 .8114

\section*{\# Gamma Distribution}
qgamma(c(0.05,0.25,0.5,0.75,0.95),shape = Gamma_alpha,rate = Gamma_lamda)
[1] 193.62611479 .42004053 .42998797 .045020369 .6614
iv) From the histogram and superimposed plots it is clear that normal distribution is not good fit to the data.

The other three plots are getting superimposed more or less similar to the data. From the quantiles it is observed that lower value( \(5{ }^{\text {th }}\) percentile) of lognormal is closed to actual value and higher values \(\left(95^{\text {th }}\right.\) percentile) of gamma distribution is closed to actual value

The best fitting distribution among Lognormal, exponential \& Gamma can not be decided basis of observations from (ii) \& (iii). Further statistical tests need to be carried out to confirm best fit

\section*{v)}
\# Simulation from Gamma distribution
set.seed(2022)
Sim_samples <- rgamma(20000,Gamma_alpha,Gamma_lamda)
head(Sim_samples,10)
[1] \(9505.7353111376 .831631458 .3025893189 .065594 \quad 5.3403635821 .017458\)
[7] 11122.004509 5372.490004 43002.3624933557 .086406
vi)
\# Generating 700 random samples of size 400 and computing sample means
means<-c()
set.seed(2022)
for (i in 1:700)\{
selected_data_point<-sample(1:20000,400,FALSE)
random_sample<- Sim_samples[selected_data_point]
sample_mean<-mean(random_sample)
means<-c(means,sample_mean)
\}

\section*{vii)}
\# Histogram of the sample means
hist(means,breaks \(=40\) )

\section*{Histogram of means}


Comment:
The distribution of sample means tend to follow normal distribution however the actual data comes from gamma distribution. Central Limit Theorem states that the sample means tend to follow normal distribution as the sample size increases. The distribution of sample means will be closer to normal distribution by increasing the sample size from its current level of 400.```


[^0]:    > \# There is a strong reason to reject null hypothesis.
    > \# Hence, it can concluded that policyholder's experience gets worse as claim count increases

