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Introduction 
The indicative solution has been written by the Examiners with the aim of helping candidates. The 
solutions given are only indicative. It is realized that there could be other points as valid answers and 
examiner have given credit for any alternative approach or interpretation which they consider to be 
reasonable. 
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Solution 1: 

i)  
x= c(5,10,15,20,25,30,35,40,45,50,55,60) 
y=c(15,12,25,23,35,36,33,38,43,45,50,53) 
 
> meanx = mean(x) 
> meany=mean(y) 
> meanx 
[1] 32.5 
> meany 
[1] 34 
 
> x_sq=x*x 
> x_sq 
 [1]   25  100  225  400  625  900 1225 1600 2025 2500 3025 3600 
> y_sq=y*y 
> xy=x*y 
> xy 
 [1]   75  120  375  460  875 1080 1155 1520 1935 2250 2750 3180 
 
 
 
> sumx_sq=sum(x_sq) 
> sumy_sq=sum(y_sq) 
> sumxy=sum(xy) 
 
> sumx_sq 
[1] 16250 
> sumy_sq 
[1] 15760 
> sumxy 
[1] 15775 
 
 
> Sxx=Sumx_sq-12*meanx^2 
> Sxx 
[1] 3575 
> Sxy=sumxy-12*meanx*meany 
> Sxy 
[1] 2515 
> Syy=sumy_sq-12*meany^2 
> Syy 
[1] 1888 
 

(7) 

 

ii) 
 
> beta=Sxy/Sxx 
> beta 
[1] 0.7034965 
 
 
> alpha=meany-beta*meanx 
> alpha 
[1] 11.13636 



IAI                                                                                                                                                            CS1B-0322 
 

Page 3 of 13 
 

> sigmasq=(1/(12-2))*(Syy-Sxy^2/Sxx) 
> sigmasq 
[1] 11.87063 

(3) 

 

iii) 
 

> expectedy=alpha+beta*x 
> expectedy 
 [1] 14.65385 18.17133 21.68881 25.20629 28.72378 32.24126 35.75874 39.27622 42.79371 
46.31119 49.82867 53.34615 

(1) 

 
iv) 
> e=y-alpha-beta*x 
> e 
 [1]  0.3461538 -6.1713287  3.3111888 -2.2062937  6.2762238  3.7587413 
 [7] -2.7587413 -1.2762238  0.2062937 -1.3111888  0.1713287 -0.3461538 
 
> meane=mean(e) 
> meane 
[1] -1.702344e-15 
 
> var(e) 
[1] 10.79148 
 
Mean value of residuals is close to zero as expected as e~N(0,sigma^2) 
 
(Otherwise, “e” could be calculated as e = y-expectedy) 
 
Var of e is slightly lower than sigma square as calculated in part ii – as denominator is not adjusted 
When denominator of 10 gets used instead of 11 we see that var of residuals = sigma^2  
> var(e)*11/10 
[1] 11.87063 

 (3) 
 

 

v) 95% confidence interval for beta 
 
Ho: Beta is zero (i.e. no linear relationship between x and y) 
H1: Beta is not equal to zero 
 
(Beta_cap-0)/ sqrt(sigma^2_cap/ Sxx) ~ t10  
 
We use t distribution with n-2 i.e. 10 degrees of freedom 
 
> qt(p=0.025, lower.tail = T, df=10) 
[1] -2.228139 
Being symmetric distribution, 97.5% point would be 2.228139 
> sqrt(sigmasq/Sxx) 
[1] 0.0576234 
 
Hence, endpoints of CI would be 
> end1=beta+sqrt(sigmasq/Sxx)*qt(p=0.025, lower.tail = T, df=10) 
> end1 
[1] 0.5751036 
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> end2=beta-sqrt(sigmasq/Sxx)*qt(p=0.025, lower.tail = T, df=10) 
> end2 
[1] 0.8318894 
 
Hence 95% Confidence interval for beta is (0.5751, 0.8319) 
 
As confidence interval for beta does not include zero, we can reject null hypothesis (viz. beta=0) and  
Hence, can conclude that beta is not equal to zero at 5% level. 
 
95% CI for sigma^2 
 
(n-2)sigmacap^2/ sigma^2 ~ Chi sq distribution with 10 degrees of freedom 
 
Tabulated values of Chi square having 10 df can be obtained as 
> chitenend1=qchisq(df=10, p=0.025) 
> chitenend2=qchisq(df=10,p=0.975) 
> chitenend1 
[1] 3.246973 
> chitenend2 
[1] 20.48318 
 
End points of CI would be 
> sigmasqend1=(12-2)*sigmasq/chitenend1 
> sigmasqend2=(12-2)*sigmasq/chitenend2 
> sigmasqend1 
[1] 36.55907 
> sigmasqend2 
[1] 5.795307 
 
Hence 95% Confidence interval for sigma^2 is (5.795,36.559) 

(7) 
 
vi) 
SSTOT = Syy = 1888 (as calculated in part i) 
 
SSREG = Sxy^2/Sxx  
> ss_reg=Sxy^2/Sxx 
> ss_reg 
[1] 1769.294  
 
SSRES = SSTOT - SSREG 

 

> ss_res=Syy-ss_reg 
> ss_res 
[1] 118.7063 
 
R^2 denotes the % of variability explained by the model 
R^2 = SSREG / (SSREG + SSRES) 
 
> Rsq = ss_reg/(ss_reg+ss_res) 
> Rsq 
[1] 0.9371259 
 
Model is a good fit as 93.7% of the variability is explained by the model. 
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> adj_Rsq = 1-((12-1)/(12-1-1))*(1-Rsq) 
> adj_Rsq 
[1] 0.9308385 
 
Adjusted R^2 (93.08%) is lower than R^2 (93.71%) as adjusted R square penalises for extra predictors 
and  
hence is better suited to assess the adequacy of the model (or for comparison between models) 
compared to just using R^2 for model comparison as  
R^2 cannot decrease on addition of more explanatory variables which can be undesirable (as it may 
promote too many explanatory variables though not adding significant improvement in the predicted 
value) 

(5) 
 

vii) 
using results from earlier parts mean predicted response is calculated (using regression line 
equation) 
> Emean52=alpha+beta*52 
> Emean52 
[1] 47.71818 
 
Expected value of mean predicted response is 47.718 when x=52 
 
varofmean52=((1/12)+(52-meanx)^2/Sxx)*sigmasq 
> varofmean52 
[1] 2.251822 
 
> mean52end1=Emean52+qt(p=0.025, lower.tail = T, df=10)*sqrt(varofmean52) 
> mean52end2=Emean52-qt(0.025,lower.tail = T, df=10)*sqrt(varofmean52) 
> mean52end1 
[1] 44.37462 
> mean52end2 
[1] 51.06174 
 
Hence 95% confidence interval for the mean predicted response is (44.3746,51.0617) 
 

(4) 
[30 Marks] 

 

Solution 2: 
 

i) 
library(dplyr) 
 
> str(policydata) 
'data.frame': 650 obs. of  4 variables: 
 $ Policy  : int  1 2 3 4 5 6 7 8 9 10 ... 
 $ Claim   : int  0 0 0 2 1 0 0 0 0 0 ... 
 $ Cust_Exp: chr  "SA" "SA" "SA" "DS" ... 
 $ Amount  : int  0 0 0 52601 56174 0 0 0 0 0 ... 
>  
> #a 
> table(policydata$Claim) 
 
  0   1   2   3  
458 149  36   7  
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> #Alternative, if dplyr installed 
> #count(policydata,Claim) 
 
> print("458 Policies don't have any claim") 
[1] "458 Policies don't have any claim" 

  (2) 
 

ii) 

> hist(policydata$Claim) 
> #poisson and negative binomial distribution 
 

 
(2) 

 

iii) 
> poisson.test(x=sum(policydata$Claim),T=length(policydata$Policy)) 
 
Exact Poisson test 
 
data:  sum(policydata$Claim) time base: length(policydata$Policy) 
number of events = 242, time base = 650, p-value < 2.2e-16 
alternative hypothesis: true event rate is not equal to 1 
95 percent confidence interval: 
 0.3268739 0.4222903 
sample estimates: 
event rate  
 0.3723077  
> #0.35 is more suitable value of parameter since it lies between confidence interval.  

(3) 

 
iv) 
> lx=log(policydata$Amount[policydata$Amount>0]) 
> #Alternative, if dplyr installed 
> #lx=log(filter(policydata,Amount >0)$Amount) 
 
> mean(lx) 
[1] 9.835205 
> median(lx) 
[1] 9.774659 
> sd(lx)^2 
[1] 3.425705 

(4) 
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v) 
> par(mfrow=c(2,1)) 
> hist(lx) 
> qqnorm(lx) 
> qqline(lx) 
 

 

 
 

(3) 

vi) 
> # From Histogram and QQPlot it seems log amount closely follows normal distribution. 
> # To add, the mean and median are very close indicating symmtery. One of the characterstics of Z.   
> # Hence,Claim amount might be following log normal distribution.  

(3) 
 

vii) 
> #Null Hypothesis : mu = 10 , alternate hypothesis mu >10 
> t.test(lx,mu=10,alternative="greater", conf.level = .9) 
 
 One Sample t-test 
 
data:  lx 
t = -1.2337, df = 191, p-value = 0.8906 
alternative hypothesis: true mean is greater than 10 
90 percent confidence interval: 
 9.663428      Inf 
sample estimates: 
mean of x  

Histogram of lx
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 9.835205  
 
> #Given p-value greater than 10% null hypothesis can not be rejected. 

(4) 
 

viii) 
> ct=table(policydata$Claim,policydata$Cust_Exp) 
> ct 
    
     DS  SA  VD  VS 
  0  63 306  20  69 
  1  36  90   9  14 
  2  16  14   6   0 
  3   3   3   1   0 
> # Null Hypothesis: No association between Policyholder's experience and Claim 
> chisq.test(ct) 
 
 Pearson's Chi-squared test 
 
data:  ct 
X-squared = 47.749, df = 9, p-value = 2.846e-07 
 
Warning message: 
In chisq.test(ct) : Chi-squared approximation may be incorrect 

(3) 
 

 
ix) 
> #There are cells where the number of observations are less than 5.             (1) 
 

x) 
> policydata$Claim2=ifelse(policydata$Claim >2,2,policydata$Claim)  
> policydata$Cust_Exp2=ifelse(policydata$Cust_Exp %in% c("DS","VD"),"DS","SA")  
> ct2=table(policydata$Claim2,policydata$Cust_Exp2) 
> ct2 
    
     DS  SA 
  0  83 375 
  1  45 104 
  2  26  17 
 
> chisq.test(ct2) 
 
 Pearson's Chi-squared test 
 
data:  ct2 
X-squared = 43.514, df = 2, p-value = 3.557e-10 
 
  
> # There is a strong reason to reject null hypothesis. 
> # Hence, it can concluded that policyholder's experience gets worse as  
claim count increases 

(5) 
 

xi) 
> summary(policydata$Amount) 
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   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
      0       0       0   29501    3232 1848069  
> policydata$large= ifelse(policydata$Amount >100000,1,0) 
> x = sum(policydata$large) 
 
> n = length(policydata$Amount[policydata$Amount>0]) 
> #Alternative, if dplyr installed 
> #n = length(filter(policydata,Amount >0)$Amount) 
 
> binom.test(x,n) 
 
 Exact binomial test 
 
data:  x and n 
number of successes = 35, number of trials = 192, p-value < 2.2e-16 
alternative hypothesis: true probability of success is not equal to 0.5 
95 percent confidence interval: 
 0.1303796 0.2442928 
sample estimates: 
probability of success  
             0.1822917  
 
>  
> # Since upper bound of c.i is less that .25, it is unlikely that more  
that  
> #25% claims are large 

(5)  
[35 Marks] 

 

Solution 3: 
 
# Sample mean and variance 
Motorclaim = read.csv("Motorclaim.CSV") 
Mean_Claim<-mean(Motorclaim$CLAIM) 
Var_Claim<-var(Motorclaim$CLAIM) 
 
i) 
# Method of moments estimate 
 
# Normal Distribution 
 
Normal_mu <- Mean_Claim                                                                                                        
Normal_sigma <- sqrt(Var_Claim)                                                                                               
 
Normal_mu 
[1] 6357.314                                                                                                                                   
 
Normal_sigma 
[1] 6986.523                                                                                                                                   
 
# Log Normal Distribution 
 
LogNormal_sigma<- sqrt(log(1+Var_Claim/Mean_Claim^2))                                                    
LogNormal_mu<-log(Mean_Claim)-LogNormal_sigma^2/2                                                      
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LogNormal_sigma 
[1] 0.8899276                                                                                                                                
 
LogNormal_mu 
[1] 8.361376                                                                                                                                    
 
# Exponential Distribution 
 
Exp_lamda <- 1/Mean_Claim                                                                                                           
 
Exp_lamda 
[1] 0.0001572991                                                                                                                              
 
 
# Gamma Distribution 
 
Gamma_lamda<-Mean_Claim/Var_Claim                                                                                      
Gamma_alpha<-Gamma_lamda*Mean_Claim                                                                                
 
Gamma_lamda 
[1] 0.0001302421                                                                                                                               
 
Gamma_alpha 
[1] 0.82799                                                                                                                                         

(8) 
 
ii) 
# Histogram 
 
hist(Motorclaim$CLAIM,breaks = 35,freq = FALSE)                                                                      
 
 
#Superimpose Normal distribution 
 
curve(dnorm(x,mean = Normal_mu,sd = Normal_sigma),from = min(Motorclaim$CLAIM), to = 
max(Motorclaim$CLAIM), add = TRUE, col= "blue")                                                                     
 
#Superimpose Log Normal distribution 
 
curve(dlnorm(x,meanlog = LogNormal_mu,sdlog = LogNormal_sigma),from = 
min(Motorclaim$CLAIM), to = max(Motorclaim$CLAIM), add = TRUE, col= "green")                                                                   
 
 
#Superimpose Exponential distribution 
 
curve(dexp(x,rate = Exp_lamda),from = min(Motorclaim$CLAIM), to = max(Motorclaim$CLAIM), add 
= TRUE, col= "red")                                                                                                                              
 
#Superimpose Gamma distribution 
 
curve(dgamma(x,shape = Gamma_alpha,rate = Gamma_lamda),from = min(Motorclaim$CLAIM), to 
= max(Motorclaim$CLAIM), add = TRUE, col= "yellow")                                                                  
 
legend("topright",legend = c("Normal", "Lognormal", "Exponential", "Gamma"),lty = 1, col = 
c("blue","green","red","yellow")) 
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                                                                                                                                                              (8) 

 
iii) 
 
# Quantiles  
 
# Actual Claim Data 
 
quantile(Motorclaim$CLAIM,c(0.05,0.25,0.5,0.75,0.95))                                                                      
 
       5%          25%       50%            75%       95%                                                                                     
 1324.561  1934.876  3631.070  7870.028 21246.913   
                                                                               
# Normal Distribution 
 
qnorm(c(0.05,0.25,0.5,0.75,0.95),mean = Normal_mu,sd = Normal_sigma)                                          
 
[1] -5134.494  1644.976  6357.314 11069.653 17849.123                                                                       
 
 
# Log Normal Distribution 
 
qlnorm(c(0.05,0.25,0.5,0.75,0.95),meanlog = LogNormal_mu,sdlog = LogNormal_sigma)                   
 
[1]   989.8714  2347.5526  4278.5767  7798.0014 18493.5327                                                                  
 
 
# Exponential Distribution 
 
qexp(c(0.05,0.25,0.5,0.75,0.95),rate = Exp_lamda)                                                                                     
 
[1]   326.0876  1828.8853  4406.5544  8813.1089 19044.8114                                                                   
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# Gamma Distribution 
 
qgamma(c(0.05,0.25,0.5,0.75,0.95),shape = Gamma_alpha,rate = Gamma_lamda)                                    
 
[1]   193.6261  1479.4200  4053.4299  8797.0450 20369.6614                                                                     
 

(5) 
 

iv)  From the histogram and superimposed plots it is clear that normal distribution is not good fit  to 
the data.    
 
The other three plots are getting superimposed more or less similar to the data. From the quantiles it 
is observed that lower value(5th percentile) of   lognormal is closed to actual value and higher 
values(95th percentile) of gamma distribution is closed to actual value                                                                                                      
 
The best fitting distribution among Lognormal, exponential & Gamma can not be decided basis of 
observations from (ii) & (iii). Further statistical tests need to be carried out to confirm best fit                                              

(4) 
 
v) 
# Simulation from Gamma distribution 
 
set.seed(2022)                                                                                                                                                      
Sim_samples <- rgamma(20000,Gamma_alpha,Gamma_lamda)                                                                         
 
head(Sim_samples,10)                                                                                                                                          
[1]  9505.735311  1376.831631   458.302589  3189.065594     5.340363  5821.017458 
 [7] 11122.004509  5372.490004 43002.362493  3557.086406                    

(2) 
vi) 
# Generating 700 random samples of size 400 and computing sample means  
 
means<-c() 
set.seed(2022) 
for (i in 1:700){ 
selected_data_point<-sample(1:20000,400,FALSE) 
random_sample<- Sim_samples[selected_data_point] 
sample_mean<-mean(random_sample) 
means<-c(means,sample_mean) 
}                                                                                                                                                                    

(5) 
 
vii) 
# Histogram of the sample means 
hist(means,breaks = 40) 
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Comment: 
The distribution of sample means tend to follow normal distribution however the actual data comes 
from gamma distribution. Central Limit Theorem states that the sample means tend to follow 
normal distribution as the sample size increases. The distribution of sample means will be closer to 
normal distribution by increasing the sample size from its current level of 400.          

                                                                                            (3) 
[35 Marks] 

 
 

*************************** 


