Institute of Actuaries of India

Subject CT3 - Probability \& Mathematical Statistics

March 2017 Examination

INDICATIVE SOLUTION

Introduction

The indicative solution has been written by the Examiners with the aim of helping candidates. The solutions given are only indicative. It is realized that there could be other points as valid answers and examiner have given credit for any alternative approach or interpretation which they consider to be reasonable.

Solution 1:

i) Ordering the marks given, stem and leaf diagram is:

1	7,9
2	$1,1,2,2,6,6,7,7,7,7$
3	$0,0,1,2,3,3,3,4,6$
4	6
5	3
6	0

The stems are 10s and leaves are units.
ii) Median: $\left(\frac{1}{2} n+\frac{1}{2}\right)^{\text {th }}$ value $=12.5^{\text {th }}$ value $=(27+30) / 2=28.5$.

Mode: 27. (27 appears the maximum number of times-four times)
iii) Interquartile Range (IQR) $=Q_{3-} Q_{1}$

Now $Q_{1}=\frac{n+2}{4}$ th value counting from below $=6.5^{\text {th }}$ value

$$
=(22+26) / 2=24
$$

$Q_{1}=\frac{n+2}{4}$ th value counting from above $=33$
Hence, $I Q R=Q_{3-} Q_{1}=33-24=9$
[Alternatively,
$Q_{1}=\frac{n+1}{4}$ th value counting from below $=6.25$ th value $=23$ and
$Q_{3}=\frac{n+1}{4}$ th value counting from above $=33$

Hence $I Q R=33-23=10]$

Solution 2:

The binomial distribution (n, p) has probability function.

$$
P(X=x)=\frac{n!}{(n-x)!x!} p^{x}(1-p)^{(n-x)} ; x=0,1,2, \ldots ; 0<p<1 .
$$

and $P(X=x-1)=\frac{n!}{(n-x+1)!(x-1)!} p^{(x-1)}(1-p)^{(n-x+1)} ; x=1,2,3, \ldots ; 0<p<1$

Now, $\frac{P(X=x)}{P(X=x-1)}=\frac{n-x+1}{x} \frac{p}{1-p}$

Therefore, $P(X=x)=\frac{n-x+1}{x} \frac{p}{1-p} P(X=x-1) ; \quad x=1,2,3, \ldots$

Solution 3:

Given that $P(A)=0.20, P(B)=0.10$ and $P(C)=0.70$
Let R be the event that he reaches office on time.
$P\left(R^{c} / A\right)=0.15, P\left(R^{c} / B\right)=0.20, P\left(R^{c} / C\right)=0.05$. [$R^{c}:$ complement of $\left.R\right]$
Using Bayes' Theorem:

$$
\begin{aligned}
P\left(B \mid R^{c}\right) & =\frac{P\left(R^{c} \mid B\right) P(B)}{P\left(R^{c} \mid A\right) P(A)+P\left(R^{c} \mid B\right) P(B)+P\left(R^{c} \mid C\right) P(C)} \\
& =\frac{(0.20)(0.10)}{(0.15)(0.20)+(0.20)(0.10)+(0.05)(0.70)}=0.235
\end{aligned}
$$

Solution 4:

i) $X_{i} \sim \operatorname{Exp}(0.002)$, so $E\left[X_{i}\right]=500 ; \operatorname{Var}\left[X_{i}\right]=250000$

$$
N \sim \operatorname{Bin}(n, p) \text {, so } E[N]=n p ; \operatorname{Var}[N]=n p(1-p)
$$

Using the formulae given on page 16 of the Tables:
$E[S]=(n p)(500)=500 n p$
$\operatorname{Var}[S]=(n p)(500)^{2}+(n p(1-p))(500)^{2}=(2 n p)(500)^{2}-n p^{2}(500)^{2}$

$$
=(n p)(500)^{2}(2-p)
$$

$S D[\mathrm{~S}]=500 * \sqrt{n p *(2-p)}$
ii) Using Normal approximation, we have:
$S \sim N\left(500 n p,(n p)(500)^{2}(2-p)\right)$,
Hence, $P[S>60000]=P\left(Z>\frac{60000-500 n p}{500 * \sqrt{n p *(2-p)}}\right)$

$$
=1-\emptyset\left(\left[\frac{120-n p}{\sqrt{n p *(2-p)}}\right]\right.
$$

Solution 5:

i) Given that $f_{X, Y}(x, y)=\frac{12}{5}\left(x^{2} y+x y\right) ; 0<x, y<1$.

The marginal pdf of $X: h(x)=\int_{0}^{1} \frac{12}{5}\left(x^{2} y+x y\right) \mathrm{d} y=\left[\frac{12}{5}\left(\frac{1}{2} x^{2} y^{2}+\frac{1}{2} x y^{2}\right)\right]_{0}^{1}$ $=\frac{12}{5}\left(\frac{1}{2} x^{2}+\frac{1}{2} x\right) ; 0<x<1$.

$$
=\frac{6}{5}\left(x^{2}+x\right) ; 0<x<1
$$

The marginal pdf of $Y: g(y)=\int_{0}^{1} \frac{12}{5}\left(x^{2} y+x y\right) \mathrm{dx}=\left[\frac{12}{5}\left(\frac{1}{3} x^{3} y+\frac{1}{2} x^{2} y\right)\right]_{0}^{1}$

$$
\begin{align*}
& \quad=\frac{12}{5}\left(\frac{1}{3} y+\frac{1}{2} y\right) ; 0<\mathrm{y}<1 . \\
& =2 y ; 0<y<1 \tag{3}
\end{align*}
$$

(ii) Clearly $f_{X, Y}(x, y)=h(x) g(y)$. The random variables are statistically independent.
(iii) $E[X]=\int_{0}^{1} \frac{12}{5}\left(\frac{1}{2} x^{3}+\frac{1}{2} x^{2}\right) \mathrm{dx}=\left[\frac{12}{5}\left(\frac{1}{8} x^{4}+\frac{1}{6} x^{3}\right)\right]_{x=0}^{1}$

$$
\begin{gather*}
=\frac{12}{5}\left(\frac{1}{8}+\frac{1}{6}\right)=0.7 \\
E[Y]=\int_{0}^{1} \frac{12}{5}\left(\frac{1}{3} y^{2}+\frac{1}{2} y^{2}\right) \mathrm{d} y=\left[\frac{12}{5}\left(\frac{1}{9} y^{3}+\frac{1}{6} y^{3}\right)\right]_{y=0}^{1} \\
=\frac{12}{5}\left(\frac{1}{9}+\frac{1}{6}\right)=0.67 \tag{3}
\end{gather*}
$$

(iv) We know that $E(X / Y)=\int_{0}^{1} x f(x \mid y) d x=\int_{0}^{1} x \frac{f(x y) d x}{f(y)}=\int_{0}^{1 \frac{12}{5}\left(x^{3} y+x^{2} y\right)} \frac{2 y}{2 y} d x$

$$
\begin{gathered}
=(6 / 5) \int_{0}^{1}\left(x^{3}+x^{2}\right) d x=(6 / 5)\left[\left(\frac{1}{4} x^{4}+\frac{1}{3} x^{3}\right)\right]_{x=0}^{1} \\
=\frac{6}{5} \times \frac{7}{12}=\frac{7}{10}
\end{gathered}
$$

$$
\begin{aligned}
& E(E(X / Y))=\int_{0}^{1}\left(\frac{7}{10}\right) f(x) d x=\int_{0}^{1}\left(\frac{7}{10}\right) f(x) d x \\
& =\int_{0}^{1}\left(\frac{7}{10}\right) \frac{12}{5}\left[\frac{1}{2}\left(x^{2}+x\right)\right] d x \\
& =\frac{7}{10} \times \frac{12}{10}\left[\left(\frac{1}{3} x^{3}+\frac{1}{2} x^{2}\right)\right]_{x=0}^{1}=\frac{7}{10} \times \frac{12}{10} \times \frac{5}{6}=0.7=E(X) . \\
& E\left(X^{2} / Y\right)=\int_{0}^{1} x^{2} f(x \mid y) d x=\int_{0}^{1} x^{2} \frac{f(x y) d x}{f(y)}=\int_{0}^{1 \frac{12}{5}\left(x^{4} y+x^{3} y\right)} \frac{2 y}{2 y} d x \\
& =(6 / 5) \int_{0}^{1}\left(x^{4}+x^{3}\right) d x \\
& =(6 / 5)\left[\left(\frac{1}{5} x^{5}+\frac{1}{4} x^{4}\right)\right]_{x=0}^{1}=\frac{6}{5} \times \frac{9}{20}=\frac{54}{100} \text {. } \\
& V(X / Y)=E\left(X^{2} / Y\right)-(E(X / Y))^{2}=\frac{54}{100}-\left(\frac{7}{10}\right)^{2}=\frac{1}{20} .
\end{aligned}
$$

[If the candidate has answered using $E[X / Y]=E[X]$ and $V[X / Y]=V[X]$
on computation of $E\left[X^{2}\right]$ and $V[X] f$ ull credit is to be given

Solution 6:

i) By definition, the moment generating function of $\operatorname{Gamma}(\alpha, \lambda)$:

$$
\begin{aligned}
& M_{X}(t)=E\left(e^{t X}\right)=\int_{0}^{\infty}\left(e^{t x} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}\right) d x \\
& =\frac{\lambda^{\alpha}}{\Gamma(\alpha)} \int_{0}^{\infty}\left(x^{\alpha-1} e^{-(\lambda-t) x}\right) d x \\
& M_{X}(t)=\frac{\lambda^{\alpha}}{(\lambda-t)^{\alpha}} \int_{0}^{\infty}\left(\frac{(\lambda-t)^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-(\lambda-t) x}\right) d x
\end{aligned}
$$

The integrand is pdf of Gamma $(\alpha, \lambda-t)$ and the value of integral is 1 .
Therefore, $M_{X}(t)=\left(\frac{\lambda}{\lambda-t}\right)^{\alpha}$, provided $t<\lambda$.
Dividing the numerator and denominator by λ gives:

$$
M_{X}(t)=\left(\frac{1}{1-\frac{t}{\lambda}}\right)^{\alpha}=\left(1-\frac{t}{\lambda}\right)^{-\alpha} \quad t<\lambda
$$

The cumulant generating function is:

$$
\begin{equation*}
C_{X}(t)=\log M_{X}(t)=-\alpha \log \left(1-\frac{t}{\lambda}\right) \tag{4}
\end{equation*}
$$

ii) The coefficient of skewness $=\frac{\operatorname{Skew}(X)}{\operatorname{Var}(X)^{1.5}}$

We know that $\operatorname{Var}(X)=C_{X}^{\prime \prime}(0)$ and $\operatorname{Skew}(X)=C_{X}^{\prime \prime \prime}(0)$

$$
C_{X}^{\prime}(t)=\frac{\alpha}{\lambda}\left(1-\frac{t}{\lambda}\right)^{-1}
$$

$C_{X}^{\prime \prime}(t)=\frac{\alpha}{\lambda^{2}}\left(1-\frac{t}{\lambda}\right)^{-2} \Rightarrow \quad \operatorname{Var}(X)=C_{X}^{\prime \prime}(0)=\frac{\alpha}{\lambda^{2}}$
$C_{X}^{\prime \prime \prime}(t)=\frac{2 \alpha}{\lambda^{3}}\left(1-\frac{t}{\lambda}\right)^{-3} \Rightarrow \operatorname{Skew}(X)=C_{X}^{\prime \prime \prime}(0)=\frac{2 \alpha}{\lambda^{3}}$
Hence, the coefficient of skewness $=\frac{2 \alpha / \lambda^{3}}{\left(\alpha / \lambda^{2}\right)^{1.5}}=\frac{2 \alpha}{\alpha^{1.5}}=\frac{2}{\sqrt{\alpha}}$
[8 Marks]

Solution 7:

Let X denote the number of shares bought (or sold if X is negative) during each trading session.
Based on the strategy adopted, we have the following distribution of X.

x	-1	0	1	2
$P(X=x)$	$\frac{1}{3}$	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{6}$

In order to apply normal approximation, we need to calculate $E[X]$ and $\operatorname{Var}[X]$.
$E[X]=\sum x P(X=x)=(-1) \frac{2}{6}+(0) \frac{1}{6}+(1) \frac{2}{6}+(2) \frac{1}{6}=\frac{1}{3}$
$E\left[X^{2}\right]=\sum x^{2} P(X=x)=\left(-1^{2}\right) \frac{2}{6}+\left(0^{2}\right) \frac{1}{6}+\left(1^{2}\right) \frac{2}{6}+\left(2^{2}\right) \frac{1}{6}=\frac{4}{3}$
$\operatorname{Var}[X]=E\left[X^{2}\right]-(E[X])^{2}=\frac{4}{3}-\frac{1}{9}=\frac{11}{9}$
Let Y denote the total number of shares after 18 trading sessions:
i.e., $Y=100+\sum X$

It is clear the $E(Y)=100+(18) \frac{1}{3}$ and $\operatorname{Var}(Y)=(18) \frac{11}{9}$

Using Central Limit Theorem, we have
$P(Y>110)=P(Y>110.5)$ using continuity correction.

$$
\begin{aligned}
& =P\left(Z>\frac{110.5-106}{\sqrt{22}}\right) \\
& =P(Z>0.9594)=1-P(Z<0.9594) \\
& =1-0.8313=0.1687
\end{aligned}
$$

Solution 8:

i) The survival times follow Exponential distribution with mean $\frac{1}{\lambda}$.

$$
\text { Let } X_{1}, X_{2}, \ldots, X_{n} \text { be a random sample }
$$

The method of Moments estimator is obtained by equating Population Mean and sample mean.
That is, $\frac{1}{\lambda}=\bar{x}$

$$
\text { For the given data, the } \mathrm{MM} \text { estimate is } \frac{1}{5}
$$

ii) Then the likelihood function of the random sample is

$$
\begin{gathered}
L=L\left(\lambda / x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{i=1}^{n} \lambda e^{-\lambda x_{i}} \\
=\lambda^{n} e^{-\lambda \sum x_{i}} \\
\log L=n \log \lambda+\lambda \sum_{i=1}^{n} x_{i} \\
\frac{\partial \log L}{\partial \lambda}=\frac{n}{\lambda}+\sum_{i=1}^{n} x_{i} \text { implies that } \hat{\lambda}=\frac{1}{5}
\end{gathered}
$$

Checking for maximum $\frac{\partial^{2} \log L}{\partial \lambda^{2}}=-\frac{n}{\lambda^{2}}<0$.
For the given data, $\bar{x}=5$. Therefor the ML estimate is: $\frac{1}{5}$.
iii) Estimate for $P(X>x)=e^{-\widehat{x x}}$
(By invariance property of MLE)
Hence, the ML estimate for $P(X>50$ hours $)=P\left(X>\frac{5}{72}\right.$ months $)$ is $e^{-\widehat{\lambda x}}=e^{-\frac{1}{5} *\left(\frac{5}{72}\right)}=e^{-\left(\frac{1}{72}\right)}=$ 0.986207
iv) The CRLB for the variance of an unbiased estimator for is λ is computed as

$$
-\frac{1}{E\left[\frac{\partial^{2} \log L}{\partial \lambda^{2}}\right]}=\frac{\lambda^{2}}{n}
$$

For the given data, the lower bound for the variance of an unbiased estimator is $\frac{1}{5^{2} * 10}=\frac{1}{250}=0.004$.
(1)
[8 Marks]

Solution 9:

i) Let true mean weight be μ. Then for the sample $X_{1}, X_{2}, \ldots, X_{n}$ from store A

$$
\begin{aligned}
& \qquad \frac{\overline{\bar{X}}-\mu}{s / \sqrt{n}} \sim t_{n-1} \\
& \text { Hence, } \quad \bar{X}-2.262 \frac{s}{\sqrt{n}}<\mu<\bar{X}+2.262 \frac{s}{\sqrt{n}} \\
& \text { From the given data, } \sum x_{i}=660 \text { and } \sum x_{i}^{2}=44,650 \text {. } \\
& \text { Hence, } \bar{x}=66 \text { and } s^{2}=\frac{1}{9}\left(44650-10(66)^{2}\right)=121.11 \\
& \text { and } s=11.005 \\
& \text { Therefore, } \bar{x}-2.262 \frac{s}{\sqrt{n}}=66-(2.262 \times 11.005 / \sqrt{ } 10)=58.128 \text { and } \\
& \quad \bar{x}+2.262 \frac{s}{\sqrt{n}}=66+(2.262 \times 11.005 / \sqrt{ } 10)=73.872 \\
& \text { Therefore, a } 95 \% \text { confidence interval for the true mean is (58.128, 73.872) }
\end{aligned}
$$

(ii) It is required that $2 \frac{s}{\sqrt{n}} t_{n-1 ; 0.025} \leq 10$

Using trial method when $n=22$,

$$
2 \frac{11.005}{\sqrt{n}} t_{n-1 ; 0.025}=4.692548 \times 2.08=9.7605 \cong 10
$$

Therefore, a minimum sample size of at least 22 is required.
(iii) Let the random sample from store B be $Y_{1}, Y_{2}, \ldots, Y_{m}$,

Then from the data,
$\bar{y}=\frac{816}{12}=68$ and $s_{y}^{2}=\frac{1}{11}\left(56,644-12 \times 68^{2}\right)=105.0909$
The pooled variance $s_{p}^{2}=[(9 \times 121.1111)+(11 \times 105.0909)] /(10+12-2)$

$$
=112.30
$$

Let μ_{X} and μ_{y} be the true mean weights of adults who visited shops A and B respectively.

Then $\frac{(\bar{X}-\bar{Y})-\left(\mu_{X}-\mu_{y}\right)}{\sqrt{s_{p}^{2}\left(\frac{1}{n}+\frac{1}{m}\right)}} \sim t_{n+m-2}$
Now, From the t table,

$$
\begin{aligned}
& -2.086<\frac{(\bar{X}-\bar{Y})-\left(\mu_{X}-\mu_{y}\right)}{\sqrt{s_{p}^{2}\left(\frac{1}{n}+\frac{1}{m}\right)}}<2.086 \\
& -2.086<\frac{(-2)-\left(\mu_{X}-\mu_{y}\right)}{\sqrt{112.30 *\left(\frac{1}{10}+\frac{1}{12}\right)}}<2.086 \\
& -2.086<\frac{(-2)-\left(\mu_{X}-\mu_{y}\right)}{4.5374}<2.086 \\
& -11.465<\mu_{Y}-\mu_{X}<7.465
\end{aligned}
$$

As this interval contains 0 , there is evidence at 5% level to suggest no significant difference in the weights measured at two different shops.
(iv) Here $\mathrm{n}=10$ and $\mathrm{m}=12$

$$
\begin{aligned}
& \text { Using } \frac{s_{x}^{2}}{s_{y}^{2}} / \frac{\sigma_{x}^{2}}{\sigma_{y}^{2}} \sim F_{n-1, m-1} \\
& \text { i.e } \frac{s_{x}^{2}}{s_{y}^{2}} / \frac{\sigma_{x}^{2}}{\sigma_{y}^{2}} \sim F_{9,11} \\
& \\
& \qquad \begin{array}{l}
\frac{s_{x}^{2}}{s_{y}^{2}} \frac{1}{F 9,11}<\frac{\sigma_{x}^{2}}{\sigma_{y}^{2}}<\frac{s_{x}^{2}}{s_{y}^{2}} F_{11,9} \\
\\
\\
1.152441 * \frac{1}{2.896}<\frac{\sigma_{x}^{2}}{\sigma_{y}^{2}}<1.152441 * 3.105
\end{array}
\end{aligned}
$$

$$
0.397942 \ll \frac{\sigma_{x}^{2}}{\sigma_{y}^{2}}<3.578329
$$

Since this confidence interval contains 1, variances of weights of adults in both shops may be assumed to be equal.

Solution 10:

i) Let X have pdf : $f_{x}(x)=\theta x^{\theta-1} ; 0<x<1 ; \theta>0$

The desired test is: The Most Powerful test of level $\alpha=0.05$ for testing the null simple
hypothesis $H_{0}: \vartheta=5$ against the simple alternative $H_{1}: \vartheta=4$, based on a random sample of size $1, x$ (say).
By Neyman Pearson lemma, we have
Reject $H_{0}: \vartheta=5$ if $\frac{f\left(\theta_{1}, x\right)}{f\left(\theta_{0}, x\right.}>k$, where k is such that

$$
P_{H_{0}}\left(\text { Reject } H_{0}\right)=\alpha .
$$

That is, Reject $H_{0}: \vartheta=5$, if $\frac{4 x^{3}}{5 x^{4}}>k$ or $\frac{4}{5 x}>k$.

This means that reject H_{0} if $x<\frac{4}{5} k\left(=k^{*}\right)$ where k^{*} is such that

$$
P_{\theta=5}\left(x<k^{*}\right)=0.05 .
$$

That is $\int_{0}^{k^{*}} 5 x^{4} d x=0.05$
This implies $k^{*}=\sqrt[5]{0.05}=0.54928$ which means reject $H_{0}: \vartheta=5$ if

$$
x<0.54928
$$

ii) \quad Power $=P\left(\right.$ Reject H_{0} when H_{0} is false $)=P(x<0.54928$ when $\vartheta=4)$

$$
\begin{equation*}
=\int_{0}^{0.54928} 4 x^{3} d x=0.54928^{4}=0.09103 \tag{2}
\end{equation*}
$$

Solution 11:

i) The Least Squares Estimates for :

$$
\begin{gathered}
\mu=\sum_{i} \sum_{j} y i j / n=138 / 19=7.2632 \\
\tau_{1}=\frac{\sum_{j} y_{i j}}{n i}-\frac{\sum_{i j} y_{i j}}{n}
\end{gathered}
$$

$$
\begin{gathered}
\tau_{1}=33 / 4-7.2632=0.9868 \\
\tau_{2}=30 / 4-7.2632=0.2368 \\
\tau_{3}=40 / 6-7.2632=-0.5965 \\
\tau_{4}=35 / 5-7.2632=-0.2632
\end{gathered}
$$

ii) Assumption:

Observations are from normal populations with same variance.
Hypotheses:
H_{0} : Each brand has same average lifetime of devices.
H_{1} : There are differences between the average lifetimes of devices manufactured by different brands.

We have
$\mathrm{SST}=\sum_{i} \sum_{j} y_{i j}^{2}-\frac{y_{. .^{2}}}{n}=1100-\frac{138^{2}}{19}=97.68421$
$\operatorname{SSB}=\sum \frac{y_{i}^{2}}{n i}-\frac{y .{ }^{2}}{n}=\left(\frac{33^{2}}{4}+\frac{30^{2}}{4}+\frac{40^{2}}{6}+\frac{35^{2}}{5}\right)-\frac{138^{2}}{19}=6.60088$
SSR= SST-SSB =97.68421-6.60088 =91.0833
ANOVA table:

Source of Variation	DF	Sum of Squares	Mean Squares
Between Treatments	3	6.60088	2.20029
Residuals	15	91.08333	6.07222
Total	18	97.68421	

The variance ratio $F=\frac{2.20029}{6.07222}=0.3623$
Under $H 0$, this has an $F_{3,15}$ distribution. The 5\% critical point for $F_{3,15}$ is 3.287 , so we have no evidence to reject H_{0} and hence we conclude that there is no difference between average lifetimes of devices manufactured by different brands.
iii) The unbiased estimate of $\sigma^{2}=S S R /(n-k)=91.083333 / 15=6.07222$

We know that SSR/ $\sigma^{2} \sim \chi_{n-k}^{2}$
We have χ_{15}^{2}, and hence $P\left(6.262<S S R / \sigma^{2}<27.49\right)$
So, $95 \% \mathrm{Cl}$ for σ^{2} is $\left(\frac{91.08333}{27.49}, \frac{91.08333}{6.262}\right)=(3.3133,14.5454)$
iv) We have $\bar{y}_{1}=8.25 ; \quad \bar{y}_{2}=7.50 ; \quad \bar{y}_{3}=6.67 \quad \bar{y}_{4}=7.00 ;$

Hence $\bar{y}_{3}<\bar{y}_{4}<\bar{y}_{2}<\bar{y}_{1}$
Considering the highest and the lowest sample means

$$
t_{(0.025, n-k)} \hat{\sigma}\left(\frac{1}{n 1}+\frac{1}{n 3}\right)^{0.5}=2.131 \times 2.4642 \times\left(\frac{1}{6}+\frac{1}{4}\right)^{0.5}=3.39
$$

The least significant difference 3.39 is more than the difference of 1.58 ($=8.25-6.67$) between the sample average lifetimes of the devices selected from brand 1 and brand 3 . Hence we would be indifferent to select brand 1 and brand 3 .

Solution 12:

i) Given that $\bar{x}=30.667 \bar{y}=69.167$
$S_{x x}=\sum \mathrm{x}^{2}-n \bar{x}^{2}=13854-12 \times\left(\frac{368}{12}\right)^{2}=13854-11285.33=2568.67$
$S_{y y}=\sum y^{2}-n \quad \bar{y}^{2}=60,900-12 \times\left(\frac{830}{12}\right)^{2}=60,900-57408.33=3491.67$
$S_{x y}=\sum x y-n \bar{x} \bar{y}=28,180-12 \times 30.667 \times 69.167=28180-25453.733=2726.27$

$$
\begin{aligned}
& \hat{\beta}=\frac{S_{x y}}{S_{x x}}=\frac{2726.27}{2568.67}=1.0615 \\
& \hat{\alpha}=\bar{y}-\hat{\beta} \bar{x}=69.167-1.0615 \times 30.667=36.6140 \\
& \hat{y}=36.6140+1.0615 x
\end{aligned}
$$

ii) We are carrying out a test of

$$
\begin{aligned}
& H_{0}: B=1 \text { vs } H_{1}: B>1 \\
& \text { We know that } \frac{\widehat{\beta}-\beta}{\sqrt{\frac{\sigma^{2}}{S_{x x}}}} \sim t_{n-2} \\
& \sigma^{2}=\frac{1}{(n-2)} \times\left(S_{y y}-\frac{S_{x y}^{2}}{S_{x x}}\right)=\frac{1}{10} \times\left(3491.67-\frac{2726.27^{2}}{2568.67}\right)=59.813
\end{aligned}
$$

The value of test statistic is

$$
\frac{1.0615-1}{\sqrt{\frac{59.813}{2568.67}}}=0.403
$$

At 5%, the critical value for t_{10} from table is 1.812 . The critical value is greater than 0.403 . Hence, we have insufficient evidence to reject H_{0}. Hence, it is reasonable to assume that the β, gradient parameter is 1.
iii) The proportion of variability explained by this model is

$$
R^{2}=\frac{S_{x y}^{2}}{S_{x x} S_{y y}}=\frac{2726.27^{2}}{2568.67 * 3491.67}=82.87 \%
$$

This tells us that 82.87% of the variation in the data can be explained by the model and indicated the good fit of the model.
iv) We know from part (i) that

$$
\begin{aligned}
& \hat{y}=36.614+1.0615 x \\
& \hat{y}=36.614+(1.0615 \times 34)=72.705
\end{aligned}
$$

Standard error of the estimate

$$
\begin{aligned}
& \sqrt{\sigma^{2}\left\{1+\frac{1}{n}+\frac{\left.\left(x_{i}-\bar{x}\right)^{2}\right)}{S_{x x}}\right\}} \\
& =\sqrt{59.813 \times\left(1+\frac{1}{12}+\frac{(34-30.667)^{2}}{2568.67}\right)} \\
& =8.066
\end{aligned}
$$

95% confidence interval for daily maintenance cost \hat{y} is $72.705 \pm t_{0.025, n-2} \mathrm{SE}(\hat{y})$

$$
=72.705 \pm 2.228 \times 8.066=(54.734,90.676)
$$

