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Q.1) As a first step, convert the given samples from the exponential distribution to samples
from the uniform distribution, via the distribution function transformation.

If X has the exponential distribution with mean 5, then e−X/5 has the uniform distribu-
tion over (0,1). Thus, the numbers e−10.6101/5, e−2.7768/5, e−11.8926/5, e−0.1976/5, e−6.6885/5

and e−6.4656/5 are samples from the uniform distribution.

Now use Box-Muller transformation on successive pairs to obtain standard normal
samples; multiply by 2 and add 2 to get requisite mean and variance :

2 + 2 ∗ (−2 log(e−10.6101/5))1/2 cos(2 ∗ π ∗ e−2.7768/5),

2 + 2 ∗ (−2 log(e−10.6101/5))1/2 sin(2 ∗ π ∗ e−2.7768/5),

2 + 2 ∗ (−2 log(e−11.8926/5))1/2 cos(2 ∗ π ∗ e−0.1976/5),

2 + 2 ∗ (−2 log(e−11.8926/5))1/2 sin(2 ∗ π ∗ e−0.1976/5),

2 + 2 ∗ (−2 log(e−6.6885/5))1/2 cos(2 ∗ π ∗ e−6.4656/5),

2 + 2 ∗ (−2 log(e−6.6885/5))1/2 sin(2 ∗ π ∗ e−6.4656/5).

These expressions lead to the samples: -1.68437, 0.15567, 6.23348, 0.94843, 1.50017,
5.23292. [5]

Q.2) (i) Expected value of the loss, A = p1X1 + p2X2 + p3X3. The premium collected by
the direct insurer is A(1 + θ).

Expected value of reinsurer’s share of loss is B = p3(X3 − X2). The premium
collected by the reinsurer is B(1 + ξ).

The overall loss matrix for the direct insurer is as under.

X1 X2 X3

d1 0 0 0

d2 X1 − A(1 + θ) X2 − A(1 + θ) X3 − A(1 + θ)

d3 X1 − A(1 + θ) X2 − A(1 + θ) X2 − A(1 + θ)
+B(1 + ξ) +B(1 + ξ) +B(1 + ξ)

(ii) The average overall loss for decision d1 is 0.
The average overall loss for decision d2 is

p1(X1 − A(1 + θ)) + p2(X2 − A(1 + θ)) + p3(X3 − A(1 + θ))

= A − A(1 + θ) = −Aθ.

The average overall loss for decision d3 is

p1(X1 − A(1 + θ) + B(1 + ξ)) + p2(X2 − A(1 + θ) + B(1 + ξ))

+p3(X2 − A(1 + θ) + B(1 + ξ))

= p1X1 + p2X2 + p3X3 − p3(X3 − X2) − A(1 + θ) + B(1 + ξ)

= A − B − A(1 + θ) + B(1 + ξ) = −Aθ + Bξ.

It is clear that the Bayes strategy, which minimizes the average overall loss, is d2.
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(iii) The minimum losses for decisions d1, d2 and d3 are 0, X1 − A(1 + θ) and X1 −
A(1 + θ) + B(1 + ξ), respectively. Note that

X1 − A(1 + θ) < A − A(1 + θ) = −Aθ < 0,

X1 − A(1 + θ) < X1 − A(1 + θ) + B(1 + ξ).

Thus, the minimum loss is minimized by strategy d2.

(iv) For the specified values of the losses and probabilities, we have A = 17 and B = 9.
The maximum losses for decisions d1, d2 and d3 are 0, X3−A(1+θ) = 83−17θ =
74.5 and X2 − A(1 + θ) + B(1 + ξ) = 2 − 17θ + 9ξ = −1.1. Thus, the minimax
strategy is d3.

(v) Continuing from part (iv), the maximum loss for decision d3 is −6.5 + 9ξ, which
is negative if and only if ξ < 13/18. Thus, the minimax strategy is d3 for 1/2 <
ξ < 13/18 and d1 for ξ ≥ 13/18. [8]

Q.3) (i) The likelihood function is

L(µ, σ2) =
10∏
i=1

exp
[
− 1

2σ2 (log xi − µ)2
]

xi(2πσ2)1/2
.

The log-likelihood is

�(µ, σ2) = −1

2

10∑
i=1

(
log xi − µ

σ

)2

− 10 log σ − 10 log(2π)1/2 −
10∑
i=1

log xi.

Hence,

∂�

∂µ
=

1

σ

10∑
i=1

(
log xi − µ

σ

)
,

∂�

∂σ
=

1

σ

10∑
i=1

(
log xi − µ

σ

)2

− 10

σ
.

By equating the first expression to zero, we get

µ̂ =
1

10

10∑
i=1

log xi,

and by equating the second expression to zero, we get

σ̂2 =
1

10

10∑
i=1

(log xi − µ̂)2 =
1

10

10∑
i=1

(log xi)
2 − µ̂2.

From the data, we have
∑10

i=1 log xi = 61.9695 and
∑10

i=1(log xi)
2 = 403.1326.

It follows that µ̂ = 6.197 and σ̂2 = 1.911, i.e., σ̂ = 1.382.
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(ii) For a Pareto distribution, we know that

E(X) =
λ

α − 1
, V ar(X) =

αλ2

(α − 1)2(α − 2)
.

the other hand, the sample moments are

X̄ =
1

10

10∑
i=1

xi = 1, 094.1,

X2 =
1

10

10∑
i=1

x2
i = 3, 076, 167.9.

Thus, the sample variance is 3, 076, 167.9 − 1, 094.12 = 1, 879, 113.

Equating the moment expressions to the corresponding sample moments, we have
(from the ratio of variance and mean-square)

α̂

α̂ − 2
=

1, 879, 113

1, 094.12
; i.e., α̂ =

2 × 1, 879, 113/1, 094.12

1, 879, 113/1, 094.12 − 1
= 5.51013,

and (from the first moment equation)

λ̂ = 1, 094.1 × (α̂ − 1) = 4, 934.4

(iii) For log-normal model,

P (X > 3000) = 1 − Φ

(
log 3000 − 6.197

1.382

)
= 1 − Φ(1.309) = 0.09527.

For Pareto,

P (X > 3000) =
(

4934.5

4934.5 + 3000

)5.51013

= 0.073011. [10]

Q.4) (i) The surplus process is

U(t) = U + Ct − S(t) = 10 + 6t − S(t),

where S(t) is the accumulated claim till time t.

Note that the function S(t) has jumps (of size 2 or 10, depending on the size of
claim) at integer values of t, and stays constant in between integer values of t.

Size of claim arising at the end of year n can be written as 2 + 8Xn, where

Xn =

{
0 with probability 3

4
,

1 with probability 1
4
.

Therefore,

S(n) = 2n + 8
n∑

j=1

Xj.
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Thus,

U(t) = 10 + 6t − 2n − 8
n∑

j=1

Xj,

where n is the integer part of t (i.e., greatest integer less than or equal to t).

Specifically for integer time n,

U(n) = 10 + 4n − 8
n∑

j=1

Xj.

(ii) The sketch is as under

0

6

12

18

24

1 2 3 4 5

t (years)

U
(
t
)
 
(
l
a
k
h
 
R
u
p
e
e
s
)

(iii) Probability of ruin at the end of the first year is

P (U(1) < 0) = P (10 + 4 − 8X1 < 0) = P (X1 > 14/8) = 0.

(iv) Probability of ruin at the end of the second year is

P (U(2) < 0) = P (10 + 8 − 8(X1 + X2) < 0)

= P (X1 + X2 > 18/8)

= 0.

(v) At the end of the fourth year, we have U(4) = 26 − 8(X1 + X2 + X3 + X4). This
expression can be negative only if X1 = X2 = X3 = X4 = 1. However, this means
that U(3) = 22 − 8(X1 + X2 + X3) < 0, that is, ruin has already occurred at the
end of the third year. Therefore, the probability that the first ruin occurs at the
end of the fourth year is actually 0. [10]

Q.5) (i) α = eµ+σ2/2 = eµ+1/2.

(ii)

E(α) = E
(
eµ+1/2

)
= e1/2

∫ ∞

−∞
eµ(2π(4))−1/2e−(µ−10)2/(2·4)dµ

= e10+1/2
∫ ∞

−∞
e(µ−10)(8π)−1/2e−(µ−10)2/8dµ
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= e10+1/2
∫ ∞

−∞
e2u(2π)−1/2e−u2/2du

= e10+1/2
∫ ∞

−∞
(2π)−1/2e−(u2−4u)/2du

= e10+1/2+22/2
∫ ∞

−∞
(2π)−1/2e−(u−2)2/2du

= e10+1/2+2 = e12.5.

(iii) We can write the mean squared error as

E[(α̂ − α)2] = E[E{(α̂ − α)2|α}]
= E[E{(zX̄ + (1 − z)E(α) − zα − (1 − z)α)2|α}]
= E[E{(z(X̄ − α) + (1 − z)(E(α) − α))2|α}]
= E[z2E{(X̄ − α)2|α} + (1 − z)2(E(α) − α)2]

= z2E[V ar(X̄|α)] + (1 − z)2V ar(α)

(iv) Let A = E[V ar(X̄|α)] and B = V ar(α). The function z2A + (1 − z)2B is to
be minimized with respect to z over the interval [0, 1]. Since A > 0 and B > 0,
the quadratic function has a unique minimum. Differentiating the function with
respect to z and setting the derivative equal to zero, we have 2zA−2(1−z)B = 0,
which leads to the solution (1 − z)/z = A/B, or,

z =
B

B + A
=

V ar(α)

V ar(α) + E[V ar(X̄|α)]
,

which is clearly between 0 and 1.

(v) Following similar steps to part (ii), we get

E(α2) = E
(
e2µ+1

)
= e1

∫ ∞

−∞
e2µ(2π(4))−1/2e−(µ−10)2/(2·4)dµ

= e20+1
∫ ∞

−∞
e2(µ−10)(8π)−1/2e−(µ−10)2/(2·4)dµ

= e20+1
∫ ∞

−∞
e4u(2π)−1/2e−u2/2du

= e20+1
∫ ∞

−∞
(2π)−1/2e−(u2−8u)/2du

= e20+1+8
∫ ∞

−∞
(2π)−1/2e−(u−4)2/2du

= e20+1+8 = e29.

Therefore,
V ar(α) = E(α2) − [E(α)]2 = e29 − e25.
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(vi) It is easy to see that V ar(X̄|α) = V ar(X1|α)/n. Further, Y = log(X1) has the
normal distribution with mean µ and variance 1. Therefore,

E(X2
1 |α) = E(e2Y |α) =

∫ ∞

−∞
e2y(2π)−1/2e−(y−µ)2/2dy

=
∫ ∞

−∞
(2π)−1/2e−(y2−2yµ+µ2−4y)/2dy

=
∫ ∞

−∞
(2π)−1/2e−(y2−2y(µ+2)+(µ+2)2−4µ−4)/2dy

= e2µ+2
∫ ∞

−∞
(2π)−1/2e−(y2−2y(µ+2)+(µ+2)2)/2dy

= e2µ+2
∫ ∞

−∞
(2π)−1/2e−(y−(µ+2))2)/2dy

= e2µ+2.

Hence,

V ar(X1|α) = E(X2
1 |α) − E(X1|α)2 = e2µ+2 − e2µ+1 = α2(e − 1).

It follows from the calculations of part (v) that

E[V ar(X̄|α)] =
E[V ar(X1|α)]

n
=

E(α2)(e − 1)

n
=

e30 − e29

n
.

(vii) Substituting the results of parts (v) and (vi) in that of part (iv), we have

z =
V ar(α)

E[V ar(X̄|α)] + V ar(α)
=

e29 − e25

(e29 − e25) + (e30 − e29)/n
.

Substituting this value of z and the result of part (ii) in the expression for the
credibility premium α̂ given in the question, we get the following expression for α̂

α̂ = zX̄ + (1 − z)E(α) =
(e29 − e25)X̄ + e12.5(e30 − e29)/n

(e29 − e25) + (e30 − e29)/n
. [15]

Q.6) (i) The transition matrix is


 q 1 − q 0

q 0 1 − q
q2 q(1 − q) 1 − q


 .

(ii) At equilibrium, we have

q(π1 + π2) + q2π3 = π1, (1)

(1 − q)π1 + q(1 − q)π3 = π2, (2)

(1 − q)(π2 + π3) = π3. (3)
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From (3), we have (1 − q)π2 = qπ3, i.e., (1 − q)2π2 = q(1 − q)π3.
Substituting the left hand side of the last equation in (2), we get (1− q)π1 + (1−
q)2π2 = π2.

(π1, π2, π3) ∝ q(1 − q)(π1, π2, π3)

∝
(
q[1 − (1 − q)2]π2, q(1 − q)π2, (1 − q)2π2

)
∝

(
q2(2 − q), q(1 − q), (1 − q)2

)
.

Thus,
(π1, π2, π3) =

(
kq2(2 − q), kq(1 − q), k(1 − q)2

)
,

for a positive number k which ensures π1+π2+π3 = 1. Solving the latter equation,
we have

1 =
(
kq2(2 − q) + kq(1 − q) + k(1 − q)2

)
= k(1 − q + 2q2 − q3).

It follows that k = 1/(1 − q + 2q2 − q3).

(iii) The expected premium for high risk policy holders is

350k[q2(2 − q) + 0.65q(1 − q) + 0.5(1 − q)2] = Rs. 183.76.

Comparison of the expected premiums of the two groups show that bad risks
only pay a little more than good risks. The NCD system does not discriminate
sufficiently between high- and low-risk policies. [12]

Q.7) (i) CUMULATIVE NUMBER OF REPORTED CLAIMS

Development Year
Accident Year 0 1 2 3 Ultimate

2002 41 46 48 49 50
2003 45 51 53
2004 50 56
2005 54

Chain ladder development factors:

f01 =
46 + 51 + 56

41 + 45 + 50
=

153

136
= 1.125,

f12 =
48 + 53

46 + 51
=

101

97
= 1.0412,

f23 =
49

48
= 1.0208,

f34 =
50

49
= 1.0204.

CUMULATIVE NUMBER OF REPORTED CLAIMS

(Forecasts in bold)
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Development Year
Accident Year 0 1 2 3 Ultimate

2002 41 46 48 49 50
2003 45 51 53 54.10 55.21
2004 50 56 58.31 59.52 60.74
2005 54 60.75 63.26 64.57 65.89

(ii) AVERAGE COST PER CLAIM

Development Year
Accident Year 0 1 2 3 Ultimate

2002 8.3414 9.3261 9.5416 9.6122 9.8000
2003 10.6889 13.5098 13.2264
2004 11.6800 14.2857
2005 12.3148

AVERAGE COST PER CLAIM

(with grossing up factors and ultimate forecasts)

Development Year
Accident Year 0 1 2 3 Ultimate

2002 8.3414 9.3261 9.5416 9.6122 9.8000
85.12% 95.16% 97.36% 98.08% 100.0%

2003 10.6889 13.5098 13.2264 13.5850
78.68% 99.45%

2004 11.6800 14.2857 14.6814
79.56%

2005 12.3148 15.1810
Average 81.12% 97.31% 97.36% 98.08% 100.0%

(iii) ULTIMATE PROJECTIONS

Accident Year No. of Claims Cost per Claim Projected Loss
2002 50.00 9.8000 490.0
2003 55.21 13.5850 750.0
2004 60.74 14.6814 891.7
2005 65.89 15.1810 1000.3
Total 3132.0

Claims paid to date : Rs. 1821.3.
Reserve required : 3132 − 1821.3 = 1310.7, i.e., Rs. 1,310,700. [11]

Q.8) (i) The given density is gamma with parameters α = 3 and β = 3/µ. Therefore, the
mean is α/β = µ.
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(ii) The log-density can be written as

log
27

2
− 3 log µ + 2 log y − 3

y

µ
=

y · 1
µ
− log 1

µ

−1
3

+ log
27

2
+ 2 log y.

The first term is of the form (yθ − b(θ))/a(φ), where θ = 1/µ, b(θ) = log(θ) and
a(φ) = −1/3. Thus, this an exponential family with natural parameter 1/µ.

(iii) The canonical link function is the reciprocal function. Thus, the model is 1/µ =
α + βx. Given data (xi, yi), i = 1, 2, . . . , 20, the log-likelihood for the parameters
is

20∑
i=1

(
log

27

2
− 3 log µ + 2 log yi − 3

yi

µ

)∣∣∣∣∣
µ=1/(α+βxi)

.

Let µ0 = 1/α and µ1 = 1/(α + β). Then the likelihood function simplifies to

20∑
i=1
xi=0

(
log

27

2
− 3 log µ0 + 2 log yi − 3

yi

µ0

)

+
20∑
i=1
xi=1

(
log

27

2
− 3 log µ1 + 2 log yi − 3

yi

µ1

)
.

The first sum depends only on µ0, while the second, only on µ1. The derivative
of the likelihood with respect to µ0 is

−3
n0

µ0

+ 3
1

µ2
0

20∑
i=1
xi=0

yi,

where n0 is the number of cases with xi = 0. The likelihood equation leads to the
maximum likelihood estimator

µ̂0 =
1

n0

20∑
i=1
xi=0

yi.

The second derivative of the log-likelihood with respect to µ0, evaluated at µ0 = µ̂0

is

3
n0

µ̂2
0

− 6
1

µ̂3
0

20∑
i=1
xi=0

yi = 3
n0

µ̂2
0

− 6
n0

µ̂2
0

= −3
n0

µ̂2
0

< 0.

Thus, µ̂0 indeed corresponds to the unique maximum of the likelihood function.
Likewise, the MLE of µ1 is

µ̂1 =
1

n1

20∑
i=1
xi=1

yi,
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where n1 is the number of cases with xi = 1. Thus, we have

1

n0

20∑
i=1
xi=0

yi = µ̂0 =
1

α̂
,

1

n1

20∑
i=1
xi=1

yi = µ̂1 =
1

α̂ + β̂
.

After eliminating α̂ from the two equations, we get

β̂ =
1

µ̂1

− 1

µ̂0

= n1




20∑
i=1
xi=1

yi




−1

− n0




20∑
i=1
xi=0

yi




−1

. [9]

Q.9) (i) We have, the autocovariance at lags 0, 1 and 2 as under:

γ(0) = V ar(Xt) = V ar(et + θet−1) = σ2(1 + θ2),

γ(1) = Cov(Xt, Xt−1) = Cov(et + θet−1, et−1 + θet−2) = θσ2.

Likewise, γ(k) for |k| > 1 is 0, and γ(−1) = θσ2.

The autocorrelation function is

ρ(k) = γ(k)/γ(0) =




1 if k = 0,
θ

1+θ2 if |k| = 1,
0 if |k| > 1.

(ii) It follows from part (i) that, the ACF should be non-zero only for k = ±1. The
sample ACFs should follow this pattern. From the table, it is clear that this
pattern is there for the column corresponding to m = 2 only. Therefore, the most
reasonable choice for d is 2.

By matching the sample ACF r(1) of column m = 2 with the value θ/(1 + θ2)
obtained from part (i), we have the equation

θ

(1 + θ2)
= −.476.

Solving this equation, we get θ = −1.372 or θ = −0.729.

For invertibility, we choose θ = −0.729. [8]

Q.10) (i) MS(t) = MN(log MX(t)).

MX(t) =
∫ ∞

0
etxθe−θxdx =

[
− θ

θ − t
e−(θ−t)x

]∞

0

=
θ

θ − t
.

On the other hand,

MN(t) =
∞∑

j=0

ente−λλn

n!
= e−λ

∞∑
j=0

(etλ)n

n!
= eλ(et−1).

It follows that
MS(t) = eλ[θ/(θ−t)−1] = eλt/(θ−t).
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(ii) For Ga(α, ν), the mean is α/ν the second moment is α(α+1)/ν2, and the variance
is α/ν2. For the prior distribution of λ, we have

α(α + 1)

ν2
=

3

2
,

α

ν2
=

1

2
.

After solving these equations, we get α = 2, ν = 2. Therefore, the prior mean is
α/ν = 1.

By substituting λ = 1 and θ = 0.005, we have from part (i) the MGF of aggregate
claim as et/(0.005−t).

(iii) The likelihood function for λ is

8∏
i=1

(
e−λλni

ni!

)
∝ e−8λλ

∑8

i=1
ni = e−8λλ5.

From part (ii), the prior distribution for λ is Ga(2, 2). Therefore, the posterior
distribution for λ is proportional to

e−8λλ5 × λ2−1e−2λ = λ7−1e−10λ,

which is immediately recognized as Ga(7, 10). The Bayes estimate of λ is the
posterior mean, which is 0.7.

(iv) Solving the moment equations for the prior distribution of θ, we have

α

ν
= 0.005,

√
α

ν
= 0.001, i.e., ν = 5000, α = 25.

Therefore, the prior distribution of θ is Ga(25, 5000).

The likelihood function for θ is

5∏
i=1

(θe−θxi) = θ5e−θ
∑5

i=1
xi = θ5e−1129.71θ.

Therefore, the posterior distribution of θ is proportional to

θ5e−1129.71θ × θ25−1e−5000θ = θ30−1e−6129.71θ,

which is Ga(30, 6129.71). The Bayes estimate of θ is the posterior mean, 30/6129.71 =
0.00489.

(v) By substituting λ = 0.7 and θ = 0.00489 in the result of part (i), we get the MGF
of aggregate claim as e0.7t/(0.00489−t).

(vi) From the result of part (i), we have

MS(t) = eλt/(θ−t).

Hence, M ′
S(t) =

[
λ

θ − t
+

λt

(θ − t)2

]
MS(t),
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M ′′
S(t) =

[
λ

θ − t
+

λt

(θ − t)2

]2

MS(t)

+

[
λ

(θ − t)2
+

λ

(θ − t)2
+

2λt

(θ − t)3

]
MS(t).

Therefore, E(S) = M ′
S(0) =

λ

θ
,

E(S2) = M ′′
S(0) =

λ2

θ2
+

2λ

θ2
,

V ar(S) = E(S2) − [E(S)]2 =
2λ

θ2
.

Substituting the prior means and Bayes estimates of the parameters from parts (ii)
and (iv), we have V ar(S) = 80000 and 58548, respectively. Thus, a considerable
reduction in the variance of S has resulted from claim information of the last eight
years. [12]
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