# Actuarial Society of India 

## Examinations

November 2006

# CT4 (103 PART) - Stochastic Modelling 

Indicative Solution

## Question 1:

i. Kolmogrov Forward Equation: $P^{\prime}(t)=P(t) A$ where

$$
A=\left[\begin{array}{cccc}
-0.1 & 0.05 & 0 & 0.05 \\
1.0 & -1.2 & 0.1 & 0.1 \\
0 & 0 & -0.4 & 0.4 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

ii. The probability of saying in state H for 10 years is

$$
\int_{10}^{\infty} 0.1 e^{-0.1 x} d x=e^{-1}
$$

iii. First transition from H must be to $S$ or $D$, each equally likely. If to $D$, then it is certain that no terminal illness will occur; otherwise probability of avoiding a terminal illness is $d_{s}$.

From S similarly, except that the transition probabilities are to H with probability $(1.0 / 1.2)=(5 / 6)$, to D or T each with probability $(0.1 / 1.2)=(1 / 12)$. Once in T it is not possible to avoid terminal illness.

Solving the above equations,

$$
\begin{aligned}
& d_{S}=\frac{1}{12}+\frac{5}{6} * \frac{1}{2}\left(1+d_{S}\right) \\
& \Rightarrow d_{S}=\frac{6}{7} \quad \text { and } \quad d_{H}=\frac{13}{14}
\end{aligned}
$$

iv. The Markov property implies that the time spent in state T has exponential distribution. The rate is 0.4 per year, so the expectation is 2.5 years.

The expected time spent in terminal illness given current health is

$$
P\left(\text { ever hit } T \mid X_{0}=H\right) * 2.5 \text { years }=\frac{2.5}{14} \text { years. }
$$

## Question 2:

i. Let $X_{n}$ be the number of different cards that Anil has after he has bought $n$ éclairs packets. Then since each card is equally likely in the new packet, $\left\{X_{n}: n\right.$ $=0,1,2, \ldots$.$\} will be a Markov chain with state space \{0,1,2, \ldots ., 50\}$ and transition probabilities such that :

$$
\left(X_{n+1} \mid X_{n}=x\right)=\left\{\begin{array}{lll}
x & \text { with probability } & \frac{x}{50} \\
x+1 & \text { with probability } & 1-\frac{x}{50}
\end{array}\right.
$$

ii. The expected number of packets that Anil needs to buy to get a complete set is

$$
\begin{aligned}
& E_{50}=\left(\frac{50}{50}\right)^{-1}+\left(\frac{49}{50}\right)^{-1}+\left(\frac{48}{50}\right)^{-1}+\ldots \ldots+\left(\frac{1}{50}\right)^{-1} \\
& =\left(\frac{50}{50}\right)+\left(\frac{50}{49}\right)+\left(\frac{50}{48}\right)+\ldots \ldots+\left(\frac{50}{1}\right)=50 \sum_{k=1}^{50} \frac{1}{k} \approx 50(\ln 50+0.5771)=224.5
\end{aligned}
$$

iii. The transition probabilities would now be

$$
\left(X_{n+1} \mid X_{n}=x\right)=\left\{\begin{array}{lll}
x & \text { with probability } & \left(\frac{x}{50}\right)\left(\frac{x-1}{49}\right) \\
x+1 & \text { with probability } & 2\left(\frac{x}{50}\right)\left(\frac{50-x}{49}\right) \\
x+2 & \text { with probability } & \left(\frac{50-x}{50}\right)\left(\frac{49-x}{49}\right)
\end{array}\right.
$$

## Question 3:

i. Consider the following:

|  | Level at the start of this year after: |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Level at start of <br> previous year | 0 claims in the <br> previous year | 1 claim in the <br> previous year | 2 claims in the <br> previous year | 3 or more claims in <br> the previous year |
| 5 | 4 | 5 | 5 | 5 |
| 4 | 3 | 5 | 5 | 5 |
| 3 | 2 | 4 | 5 | 5 |
| 2 | 1 | 3 | 4 | 5 |
| 1 | 1 | 1 | 2 | 5 |

For each policyholder, the number of claims in each year has a Poisson (0.25) distribution. So,

$$
\begin{array}{lll}
P(0 \text { claims })= & e^{-0.25} & =0.7788 \\
P(1 \text { claim })= & 0.25 e^{-0.25} & =0.1947 \\
P(2 \text { claims })= & \left(0.25^{2} * e^{-0.25}\right) / 2 & =0.0243
\end{array}
$$

Thus, the transition probability matrix is:

$$
P=\left[\begin{array}{ccccc}
0.9735 & 0.0243 & 0 & 0 & 0.0022 \\
0.7788 & 0 & 0.1947 & 0.0243 & 0.0022 \\
0 & 0.7788 & 0 & 0.1947 & 0.0265 \\
0 & 0 & 0.7788 & 0 & 0.2212 \\
0 & 0 & 0 & 0.7788 & 0.2212
\end{array}\right]
$$

ii. In order to be in Level 1 in year 3, the policyholder requires two consecutive claim-free years. The probability of this is $0.7788^{2}=0.6065$.

A similar argument can be used for probability in Level 3 in year 3, but it may be simpler to calculate the whole vector of probabilities $\mathrm{x}_{3}$, where

$$
\begin{aligned}
& x_{1}=\left(\begin{array}{lllll}
0 & 0 & 1 & 0 & 0
\end{array}\right) \\
& x_{2}=\left(\begin{array}{llllllll}
0 & 0 & 1 & 0 & 0
\end{array}\right) P=\left(\begin{array}{lllllll}
0 & 0.7788 & 0 & 0.1947 & 0.0265
\end{array}\right) \\
& x_{3}=\left(\begin{array}{lllllll}
0 & 0.7788 & 0 & 0.1947 & 0.0265
\end{array}\right) P=\left(\begin{array}{llllll}
0.6065 & 0 & 0.3033 & 0.0396 & 0.0506
\end{array}\right)
\end{aligned}
$$

Probability of being in level 3 is 0.3033 or $30.33 \%$.
iii. Consider the following:
a. The required conditions are that the chain is irreducible and aperiodic.
b. Irreducibility: Level $I$ can be reached from level $j$ in $|\boldsymbol{j}-\boldsymbol{I}|$ steps Aperiodicty: $p_{i i}>0$ for some I
c. The stationary distribution $\pi$ will not depend on the starting position. We require:

$$
\left(\begin{array}{lllll}
\pi_{1} & \pi_{2} & \pi_{3} & \pi_{4} & \pi_{5}
\end{array}\right) P=\left(\begin{array}{lllll}
\pi_{1} & \pi_{2} & \pi_{3} & \pi_{4} & \pi_{5}
\end{array}\right)
$$

This gives the following equations:

$$
\begin{align*}
& 0.9735 \pi_{1}+0.7788 \pi_{2}=\pi_{1}  \tag{1}\\
& 0.0243 \pi_{1}+0.7788 \pi_{3}=\pi_{2}  \tag{2}\\
& 0.1947 \pi_{2}+0.7788 \pi_{4}=\pi_{3}  \tag{3}\\
& 0.0243 \pi_{2}+0.1947 \pi_{3}+0.7788 \pi_{5}=\pi_{4}  \tag{4}\\
& \pi_{1}+\pi_{2}+\pi_{3}+\pi_{4}+\pi_{5}=1 \tag{5}
\end{align*}
$$

Solving these simultaneous equations,
from (1) $\Rightarrow \pi_{2}-\frac{1-0.9735}{0.7788} \pi_{1}=0.0340 \pi_{1}$
substitute for $\pi_{2}$ in $(2) \Rightarrow \pi_{3}=\frac{0.0340-0.0243}{0.7788} \pi_{1}=0.01244 \pi_{1}$
substitute for $\pi_{2}$ and $\pi_{3}$ in $(3) \Rightarrow \pi_{4}=\frac{0.01244-0.1947 * 0.0340}{0.7788} \pi_{1}=0.00747 \pi_{1}$
substitute for $\pi_{2}, \pi_{3}$ and $\pi_{4}$ in ( 4$) \Rightarrow \pi_{5}=\frac{0.00747-0.1947 * 0.01244-0.0243 * 0.0340}{0.7788} \pi_{1}=0.00541 \pi_{1}$
and substituting for $\pi_{2}, \pi_{3}, \pi_{4}$ and $\pi_{5}$ in (5) $\Rightarrow \pi_{1}=0.9440$
$\Rightarrow \pi_{2}=0.0321, \pi_{3}=0.0117, \pi_{4}=0.0071$ and $\pi_{5}=0.0051$,
iv. A chi - squared goodness of fit test is best here.

