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Question 1: 

i. Kolmogrov Forward Equation: P′(t) = P(t) A where 
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ii. The probability of saying in state H for 10 years is 
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iii. First transition from H must be to S or D, each equally likely. If to D, then it is 
certain that no terminal illness will occur; otherwise probability of avoiding a 
terminal illness is dS. 

 
 

From S similarly, except that the transition probabilities are to H with 
probability (1.0/1.2) = (5/6), to D or T each with probability (0.1/1.2) = (1/12). 
Once in T it is not possible to avoid terminal illness. 

 
 
Solving the above equations, 

( )

14
13

7
6

1
2
1*

6
5

12
1

==⇒

++=

HS

SS

dandd

dd
 

 
 

iv. The Markov property implies that the time spent in state T has exponential 
distribution. The rate is 0.4 per year, so the expectation is 2.5 years. 

 
The expected time spent in terminal illness given current health is 
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Question 2: 
i. Let Xn be the number of different cards that Anil has after he has bought n 

éclairs packets. Then since each card is equally likely in the new packet, {Xn: n 
= 0, 1, 2, ….} will be a Markov chain with state space {0, 1, 2, …., 50} and 
transition probabilities such that : 
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ii. The expected number of packets that Anil needs to buy to get a complete set is 
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iii. The transition probabilities would now be 

( )

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

⎟
⎠
⎞

⎜
⎝
⎛ −
⎟
⎠
⎞

⎜
⎝
⎛ −

+

⎟
⎠
⎞

⎜
⎝
⎛ −
⎟
⎠
⎞

⎜
⎝
⎛+

⎟
⎠
⎞

⎜
⎝
⎛ −
⎟
⎠
⎞

⎜
⎝
⎛

==+

49
49

50
502

49
50

50
21

49
1

50

|1

xxyprobabilitwithx

xxyprobabilitwithx

xxyprobabilitwithx

xXX nn  

 
[10] 

 
Question 3: 

i. Consider the following: 
 
 Level at the start of this year after: 

Level at start of 
previous year 

0 claims in the 
previous year 

1 claim in the 
previous year 

2 claims in the 
previous year 

3 or more claims in 
the previous year 

5 4 5 5 5 
4 3 5 5 5 
3 2 4 5 5 
2 1 3 4 5 
1 1 1 2 5 
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For each policyholder, the number of claims in each year has a Poisson (0.25) 
distribution. So, 

  P(0 claims)=   e-0.25    = 0.7788 
  P(1 claim)=   0.25 e-0.25   = 0.1947 
  P(2 claims)=   (0.252* e-0.25)/2  = 0.0243 
  P(3 or more claims)=  1- 0.7788 – 0.1947 – 0.0243 = 0.0022 
 
 Thus, the transition probability matrix is: 
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ii. In order to be in Level 1 in year 3, the policyholder requires two consecutive 
claim-free years. The probability of this is 0.77882 = 0.6065. 

 
A similar argument can be used for probability in Level 3 in year 3, but it may 
be simpler to calculate the whole vector of probabilities x3, where 
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Probability of being in level 3 is 0.3033 or 30.33%. 

 
 

iii. Consider the following: 
a. The required conditions are that the chain is irreducible and aperiodic. 

 
 

b. Irreducibility: Level I can be reached from level j in |j – I| steps 
Aperiodicty: pii > 0 for some I 

 
 

c. The stationary distribution π will not depend on the starting position. 
We require: 
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         This gives the following equations: 
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  Solving these simultaneous equations,  
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iv. A chi – squared goodness of fit test is best here. 
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[Total 50] 


