Actuarial Society of India

Examinations

November 2006

CT4 (103 PART) – Stochastic Modelling

Indicative Solution

Question 1:

i. Kolmogrov Forward Equation: P'(t) = P(t)A where

A =	-0.1	0.05	0	0.05
	1.0	-1.2	0.1	0.1
	0	0	-0.4	0.4
	0	0	0	0

ii. The probability of saying in state H for 10 years is

$$\int_{10}^{\infty} 0.1e^{-0.1x} dx = e^{-1}$$

iii. First transition from H must be to S or D, each equally likely. If to D, then it is certain that no terminal illness will occur; otherwise probability of avoiding a terminal illness is d_s .

From S similarly, except that the transition probabilities are to H with probability (1.0/1.2) = (5/6), to D or T each with probability (0.1/1.2) = (1/12). Once in T it is not possible to avoid terminal illness.

Solving the above equations,

$$d_{s} = \frac{1}{12} + \frac{5}{6} * \frac{1}{2} (1 + d_{s})$$

$$\Rightarrow d_{s} = \frac{6}{7} \quad and \quad d_{H} = \frac{13}{14}$$

iv. The Markov property implies that the time spent in state T has exponential distribution. The rate is 0.4 per year, so the expectation is 2.5 years.

The expected time spent in terminal illness given current health is

$$P(ever hit T | X_0 = H) * 2.5 years = \frac{2.5}{14} years.$$

[20]

Question 2:

i. Let X_n be the number of different cards that Anil has after he has bought n éclairs packets. Then since each card is equally likely in the new packet, $\{X_n: n = 0, 1, 2,\}$ will be a Markov chain with state space $\{0, 1, 2,, 50\}$ and transition probabilities such that :

$$\left(X_{n+1} \mid X_n = x\right) = \begin{cases} x & \text{with probability} \quad \frac{x}{50} \\ x+1 & \text{with probability} \quad 1 - \frac{x}{50} \end{cases}$$

ii. The expected number of packets that Anil needs to buy to get a complete set is

$$E_{50} = \left(\frac{50}{50}\right)^{-1} + \left(\frac{49}{50}\right)^{-1} + \left(\frac{48}{50}\right)^{-1} + \dots + \left(\frac{1}{50}\right)^{-1}$$
$$= \left(\frac{50}{50}\right) + \left(\frac{50}{49}\right) + \left(\frac{50}{48}\right) + \dots + \left(\frac{50}{1}\right) = 50\sum_{k=1}^{50} \frac{1}{k} \approx 50(\ln 50 + 0.5771) = 224.5$$

iii. The transition probabilities would now be

$$\begin{pmatrix} X_{n+1} \mid X_n = x \end{pmatrix} = \begin{cases} x & \text{with probability } \left(\frac{x}{50}\right) \left(\frac{x-1}{49}\right) \\ x+1 & \text{with probability } 2\left(\frac{x}{50}\right) \left(\frac{50-x}{49}\right) \\ x+2 & \text{with probability } \left(\frac{50-x}{50}\right) \left(\frac{49-x}{49}\right) \end{cases}$$

ſ	1	()]	
_			_	•

Question 3:

i. Consider the following:

	Level at the start of this year after:				
Level at start of	0 claims in the	1 claim in the	2 claims in the	3 or more claims in	
previous year	previous year	previous year	previous year	the previous year	
5	4	5	5	5	
4	3	5	5	5	
3	2	4	5	5	
2	1	3	4	5	
1	1	1	2	5	

$P(0 \ claims) =$	$e^{-0.25}$	= 0.7788
$P(1 \ claim) =$	$0.25 e^{-0.25}$	= 0.1947
$P(2 \ claims) =$	$(0.25^2 * e^{-0.25})/2$	= 0.0243
P(3 or more claims) =	1-0.7788-0.1947-0.0243	= 0.0022

Thus, the transition probability matrix is:

	0.9735	0.0243	0	0	0.0022
	0.7788	0	0.1947	0.0243	0.0022
P =	0	0.7788	0	0.1947	0.0265
	0	0	0.7788	0	0.2212
	0	0	0	0.7788	0.2212

ii. In order to be in Level 1 in year 3, the policyholder requires two consecutive claim-free years. The probability of this is $0.7788^2 = 0.6065$.

A similar argument can be used for probability in Level 3 in year 3, but it may be simpler to calculate the whole vector of probabilities x_3 , where

 $\begin{aligned} x_1 &= \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \end{pmatrix} \\ x_2 &= \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \end{pmatrix} P = \begin{pmatrix} 0 & 0.7788 & 0 & 0.1947 & 0.0265 \end{pmatrix} \\ x_3 &= \begin{pmatrix} 0 & 0.7788 & 0 & 0.1947 & 0.0265 \end{pmatrix} P = \begin{pmatrix} 0.6065 & 0 & 0.3033 & 0.0396 & 0.0506 \end{pmatrix} \end{aligned}$

Probability of being in level 3 is 0.3033 or 30.33%.

- iii. Consider the following:
 - a. The required conditions are that the chain is irreducible and aperiodic.
 - b. Irreducibility: Level I can be reached from level j in |j I| steps Aperiodicty: $p_{ii} > 0$ for some I
 - c. The stationary distribution π will not depend on the starting position. We require:

 $(\pi_1 \ \pi_2 \ \pi_3 \ \pi_4 \ \pi_5)P = (\pi_1 \ \pi_2 \ \pi_3 \ \pi_4 \ \pi_5)$

This gives the following equations:

$$0.9735\pi_1 + 0.7788\pi_2 = \pi_1 \tag{1}$$

$$0.0243\pi_1 + 0.7788\pi_3 = \pi_2 \tag{2}$$

 $0.1947\pi_2 + 0.7788\pi_4 = \pi_3 \tag{3}$

$$0.0243\pi_2 + 0.1947\pi_3 + 0.7788\pi_5 = \pi_4 \tag{4}$$

$$\pi_1 + \pi_2 + \pi_3 + \pi_4 + \pi_5 = 1 \tag{5}$$

Solving these simultaneous equations,

 $\begin{aligned} &from (1) \Rightarrow \pi_2 - \frac{1 - 0.9735}{0.7788} \pi_1 = 0.0340 \pi_1 \\ &substitute \ for \ \pi_2 \ in (2) \Rightarrow \pi_3 = \frac{0.0340 - 0.0243}{0.7788} \pi_1 = 0.01244 \pi_1 \\ &substitute \ for \ \pi_2 \ and \ \pi_3 \ in (3) \Rightarrow \pi_4 = \frac{0.01244 - 0.1947 * 0.0340}{0.7788} \pi_1 = 0.00747 \pi_1 \\ &substitute \ for \ \pi_2, \pi_3 \ and \ \pi_4 \ in (4) \Rightarrow \pi_5 = \frac{0.00747 - 0.1947 * 0.01244 - 0.0243 * 0.0340}{0.7788} \pi_1 = 0.00541 \pi_1 \\ &and \ substituting \ for \ \pi_2, \pi_3, \pi_4 \ and \ \pi_5 \ in (5) \Rightarrow \pi_1 = 0.9440 \\ &\Rightarrow \pi_2 = 0.0321, \ \pi_3 = 0.0117, \ \pi_4 = 0.0071 \ and \ \pi_5 = 0.0051, \end{aligned}$

iv. A chi – squared goodness of fit test is best here.

[20] [Total 50]