Actuarial Society of India

Examinations

November 2006 Examinations

CT3 - Probability and Mathematical Statistics

Indicative Solutions

1. i) Minimum : 47 Maximum : 60
$Q_{1}: 11^{\text {th }}$ smallest 50
Q_{2} : Average of $21^{s t}$ and $22^{\text {nd }}$ smallest 51.5
$Q_{3}: 32^{\text {nd }}$ smallest 54
BOX PLOT

ii) Mean : $\Sigma x x / n=\frac{2174}{42}=51.76$
iii) Sample variance $s^{2}=\frac{1}{n-1}\left[\sum f x^{2}-n \bar{x}^{2}\right]$

$$
=\frac{1}{41}[112890-112522]=8.97
$$

iv) $\mathrm{IQR}=Q_{3}-Q_{1}=54-50=4$
2. $P(A / B \cap C) P(C)=\frac{P(A \cap B \cap C)}{P(B) P(C)} P(C)=\frac{P(A \cap B \cap C)}{P(B)}$
$P\left(A \cap B \cap C^{c}\right) P(C)=\frac{P\left(A \cap B \cap C^{c}\right)}{P(B) P\left(C^{c}\right)} P\left(C^{c}\right)=\frac{P\left(A \cap B \cap C^{c}\right)}{P(B)}$

$$
\begin{aligned}
\frac{P(A \cap B \cap C)}{P(B)}+\frac{P\left(A \cap B \cap C^{c}\right)}{P(B)} & =\frac{P(A \cap B \cap C)+P\left(A \cap B \cap C^{c}\right)}{P(B)} \\
& =\frac{P(A \cap B)}{P(B)}=P(A / B)
\end{aligned}
$$

3. D : Defective bulbs $N D$: Non Defective

Sample space : $\{N, D N, D D N, D D D N\}$
with probabilities $\frac{5}{8}, \frac{3}{8} \times \frac{5}{7}, \frac{3}{8} \times \frac{2}{7} \times \frac{5}{6}$ and $\frac{3}{8} \times \frac{2}{7} \times \frac{1}{6} \times \frac{5}{5}$
Let X denote number of bulbs chosen with values $1,2,3,4$

$$
\begin{gathered}
E X=1(5 / 8)+2(15 / 56)+3(5 / 56)+4(1 / 56) \\
=12 / 8=1.5
\end{gathered}
$$

4. $f(x, y)=\left\{\begin{array}{cc}4 y(x-y) e^{-(x+y)} & ; 0<x<\infty, \quad 0 \leq y \leq x \\ 0 & \text { otherwise }\end{array}\right.$

$$
\begin{aligned}
& f_{Y}(y)=\int_{y}^{\infty} 4 y(x-y) e^{-(x+y)} d x \\
& f_{X / Y}{ }^{(x / y)}=\frac{f(x, y)}{f_{Y}(y)}=\frac{4 y(x-y) e^{-(x+y)}}{\int_{y}^{\infty} 4 y(x-y) e^{-(x+y)} d x} \\
&=\frac{(x-y) e^{-x}}{\int_{y}^{\infty}(x-y) e^{-x} d x}
\end{aligned}
$$

The integral $\int_{y}^{\infty}(x-y) e^{-x} d x$ reduces to $\int_{0}^{\infty} w e^{-(y+w)} d w$ by letting $w=x-y$. Note that $\int_{0}^{\infty} w e^{-w} d w$ is the expected value of exponential random variable W with mean 1 .

Hence, $f_{x / y}(x / y)=(x-y) e^{-(x-y)} ; x>y$

$$
\begin{aligned}
& E(X / Y=y)=\int_{y}^{\infty} x(x-y) e^{-(x-y)} d x \\
& =\int_{0}^{\infty} w(w+y) e^{-w} d w \\
& =E\left(W^{2}\right)+y E(W) \\
& =2+y
\end{aligned}
$$

5. $X \sim f(x)=e^{-x} ; x>0 ; \quad Y=1-e^{-X}$

$$
\begin{aligned}
M_{Y}(t) & =E\left(e^{t Y}\right)=\int_{0}^{\infty} e^{t\left(1-e^{-x}\right)} e^{-x} d x \\
& =e^{t} \int_{0}^{\infty} e^{\left(-x-t e^{-x}\right)} d x \quad=e^{t} \int_{0}^{1} y e^{-t y} d y \quad \text { if } y=e^{-x} \\
& =\frac{e^{t}-1}{t} ; t \in R
\end{aligned}
$$

Since $M_{Y}(t)$ is the $m g f$ of uniform distribution over $(0,1)$, it implies that Y has uniform distribution over (0,1), as the $m g f$ determines the distribution uniquely.
6. Postulates of Poisson Process
$\{N(t) ; t \geq 0\}$ denote the total number of occurrences of the event E in an interval of duration t. $\{N(t) ; t \geq 0\}$ is called a Poisson processes if the following Postulates are satisfied.

1. Independence: $N(t)$ is independent of the number of occurrences in an interval prior to the interval ($0, t$), i.e. future changes in $N(t)$ are independent of the past changes.
2. Homogeneity in time: $P_{n}(t)$, the probability of the number of occurrences, depends only on the length t of the interval and is independent of where the interval is situated.
3. Regularity: $P_{I}(t)=\lambda t+o(t)$ and $P_{n}(t)=o(t) ; n \geq 2$ where $o(t) / t \rightarrow 0$

Let $N(t)=N_{l}(t)-N_{2}(t)$, where $N_{l}(t)$ and $N_{2}(t)$ are independent Poisson process.
The $p g f$ of $N(t)=E\left(s^{N(t)}\right)=E\left(s^{N_{l}(t)-N_{2}(t)}\right)=E\left(s^{N_{l}(t)}\right) \cdot E\left(s^{-N_{2}(t)}\right)$

$$
\begin{aligned}
& =E\left(s^{N_{1}(t)}\right) E\left(\frac{1}{s}\right)^{N_{2}(t)} \\
& \Rightarrow N(t) \text { is not a Poisson process. }
\end{aligned}
$$

7. $P\left(\frac{s_{1}^{2}}{s_{2}^{2}}<4.03\right)$

$$
\begin{aligned}
=P(F<4.03) & =1-P(F>4.03) \text { with }(9,14) d f \\
& \simeq 1-.01=0.99
\end{aligned}
$$

8. X denote the number of times 6 will appear when a fair die is tossed

$$
\begin{aligned}
& X \sim B(180,1 / 6), \text { mean }: 30, \text { Variance }: 25 \\
& P(29 \leq X \leq 39)=P(28.5 \leq X \leq 39.5) \\
& \quad \text { (using normal approximation with continuity correction) } \\
& =P(-0.3 \leq Z \leq 1.9) \\
& \\
& =0.1179+0.4713=0.5892 \\
& P(X \leq 22) \\
& =P(X \leq 21.5) \\
& \\
& =P(Z<-1.7) \\
& \\
& =0.0446
\end{aligned}
$$

9. i) $L(\boldsymbol{\lambda})=\prod_{i=1}^{n} \lambda e^{-\lambda x_{i}}=\lambda^{n} e^{-\lambda \Sigma x_{i}}$
$\log L(\lambda)=n \log \lambda-\lambda \Sigma x_{i}$

$$
\frac{\partial \log L(\lambda)}{\partial \lambda}=\frac{n}{\lambda}-\sum x_{i}=0 \text { gives } \hat{\lambda}=\frac{n}{\Sigma x_{i}}=\frac{1}{\bar{x}}
$$

$$
\frac{\partial^{2} \log L(\lambda)}{\partial \lambda^{2}}=-\frac{n}{\lambda^{2}}<0 \text { giving maximum }
$$

For the given data $\hat{\lambda}=\frac{20}{6939.5}=0.0029$
ii) $\mathrm{CRLB}=-\frac{1}{E\left[\frac{\partial^{2}}{\partial \lambda^{2}} \log L(\lambda)\right]}=\frac{1}{E\left[n / \lambda^{2}\right]}=\frac{\lambda^{2}}{n}$

Approximate variance $=\frac{\lambda^{2}}{n}=\frac{(.0029)^{2}}{20} \simeq 0.4 \times 10^{-6}$
iii) Since $\hat{\lambda} \sim N(\lambda, C R L B)$, the approximate 95% confidence interval for $\boldsymbol{\lambda}$ is

$$
\begin{aligned}
& \hat{\lambda} \pm 1.96 \sqrt{C R L B} \\
& 0.0029 \pm 1.96 \times 6.44 \times 10^{-4} \\
& 0.0029 \pm 0.00126=(0.00164,0.00416)
\end{aligned}
$$

iv) $L(\lambda)=\prod_{i=1}^{16} \lambda_{i} e^{-\lambda x_{i}} \prod_{i=1}^{4} e^{-\lambda y_{i}} ; \quad y_{i}=600, i=1,2,3,4$

$$
\log L(\lambda)=16 \log \lambda-\lambda\left(\left(\sum x_{i}+\sum y_{i}\right)\right.
$$

$$
\frac{\partial \log L(\lambda)}{\partial \lambda}=0 \text { gives } \quad \tilde{\lambda}=\frac{16}{\Sigma x_{i}+(4 \times 600)}
$$

$$
=\frac{16}{6659.7}=0.0024
$$

10.

Note: In the question the distribution of blood group among general public is not given. In fact the proportion of people with different blood groups are known to be different. However, in the absence of this information the problem has been solved as given below under this assumption of equality of different proportions. The law of equal distribution of ignorance is valid, if the proportions of different attributes are mot given. The rejection of such a hypothesis would lead to different proportions for the various levels of the attributes in the population.

$$
n=200
$$

Observed frequencies:

$$
O_{A}=92 \quad O_{B}=20
$$

$$
O_{A B}=4
$$

$$
O_{0}=84
$$

The expected frequencies:

$$
E_{A}=50
$$

$$
E_{B}=50
$$

$$
E_{A B}=50
$$

$$
E_{0}=50
$$

(under H_{0})

$$
\chi^{2}=\sum \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}=\frac{1}{50}\left[42^{2}+30^{2}+46^{2}+34^{2}\right]=118.72
$$

Critical value of χ_{3}^{2} at 5% level is 7.815
Reject H_{0} that the blood type distribution of people with stomach cancer is same that of the general public.
11. i) From the data it can be computed as

$$
\begin{aligned}
& \begin{array}{c}
s_{l}=40, \\
H_{0}
\end{array}: \begin{aligned}
& \mu_{l} \leq \mu_{2} \text { and } \\
& s_{2}=44 \text { (approx) } \\
& s^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}=\frac{(11 \times 1600)+(11 \times 1936)}{22} \\
&=\frac{1768}{H_{l}: \mu_{l}>\mu_{2}} \\
& t= \frac{\bar{x}_{1}-\bar{x}_{2}}{s \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}=2.16
\end{aligned}
\end{aligned}
$$

Critical value for t at 22 df for 5% level is 1.717 . Reject H_{0}
ii) $H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2} \quad H_{1}: \sigma_{1}^{2} \neq \boldsymbol{\sigma}_{2}^{2}$
$F=\frac{s_{2}^{2}}{s_{1}^{2}}=1.21$. Critical value of $F(11,11)$ at 5% level is 2.82. Accept H_{0}
iii) Interval with ($1-\alpha$) \% confidence is

$$
\begin{aligned}
& \left(\bar{x}_{1}-\bar{x}_{2} \pm t_{\alpha / 2} s_{\left(\bar{x}_{1}-\bar{x}_{2}\right)}\right) \\
& \bar{x}_{1}=325, \bar{x}_{2}=288, n_{1}=n_{2}=12 \\
& s_{\left(x_{1}-\bar{x}_{2}\right)}=\sqrt{s^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}=17.1659
\end{aligned}
$$

90% Confidence interval is $(325-288 \pm(1.717 \times 17.1659)$

$$
=(7.5261,66.4739)
$$

12. Model : $x_{i j}=\mu+\alpha_{i}+e_{i j} ; j=1,2, \ldots, n_{I} ; i=1,2,3$
μ : the overall mean
$e_{i j}:$ random component $\sim N\left(0 . \sigma^{2}\right)$
Hypothesis: $H_{0}: \alpha_{1}=\alpha_{2}=\alpha_{3}$

$$
H_{l}: \alpha_{l} \neq \alpha_{2} \neq \alpha_{3}
$$

$\alpha_{i}: i=1,2,3$ are population means at Delhi, Mumbai and Chennai respectively. Assumptions :
i) Samples are drawn from normal populations
ii) Samples are independent
iii) Population variances are equal

ANOVA

\quad Sources	Sum of squares	d.f.	MSS	F
Treatments	516	2	258	$9.00(\mathrm{app})$
Error	430	15	28.67	9.0
Total	946	17		

Critical value of $F(2,15)$ at 5% level $=3.682$
Reject H_{0}. The population means are not equal in these places
13. $H_{0}: \rho=0 \quad H_{l}: \rho>0$

The test statistic is $t=\frac{r \sqrt{n-2}}{\sqrt{1-r^{2}}} \sim t_{(n-2)} d f$ and $n=10$.
If the p-value for one-sided test is 0.025 , then observed t value is 2.306
Hence, $2.306=\frac{r \sqrt{8}}{\sqrt{1-r^{2}}}$ gives

$$
\begin{gathered}
r^{2}=0.3993 \\
r=0.632
\end{gathered}
$$

If Fisher's transformation is used, then $Z=\frac{1}{2} \log \left(\frac{1+r}{1-r}\right)$, which under H_{0} has approximately $N(0,1 / 7)$. This gives $r=0.630$.

14. i) SCATTER PLOT

ii) $n=10, \Sigma x_{i}=140 \quad \Sigma y_{i}=1300 \quad \bar{x}=14 \quad \bar{y}=130$

Estimated regression equation is: $y=b_{0}+b_{1} x$

$$
\text { where } \begin{aligned}
b_{1} & =\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}=\frac{2840}{568}=5 \\
b_{0} & =\bar{y}-b_{i} \bar{x}=130-(5 \times 14)=60 \\
y & =60+5 x
\end{aligned}
$$

iii) $H_{0}: \beta_{l}=0 \quad H_{l}: \beta_{l} \quad 0$

The statistic $t=\frac{b_{1}-\beta_{1}}{s_{b_{1}}} \sim t_{(n-2)} d f$
$s_{b_{1}}=\frac{s}{\sum\left(x_{i}-\bar{x}\right)^{2}}=\frac{13.829}{\sqrt{568}}=0.5803$
under $H_{0}, t=\frac{b_{1}}{s_{b_{1}}}=\frac{5}{0.5803}=8.62$
The critical value of t for $n-2=8 d f$ at $\boldsymbol{\alpha}=0.01$ is 3.355
Reject H_{0} :
iv) 99% confidence interval for β_{l} is $b_{1} \pm t_{\alpha / 2} s_{b_{1}}$.

Hence the confidence interval is

$$
\begin{aligned}
& 5 \pm(3.355 \times 0.5803) \\
= & 5 \pm 1.947=(3.053,6.947)
\end{aligned}
$$

15. $P g f$ of S_{N} :
i) $p_{1}\left(s_{N}\right)=E\left(s^{S_{N}}\right)=E\left(s^{X_{1}+X_{2}+\ldots+X_{N}}\right)$

$$
\begin{aligned}
& =E\left[E\left(s^{X_{1}+X_{2}+\ldots+X_{N}} / N\right)\right] \\
& =\sum_{n=0}^{\infty} E\left[\left(s^{X_{1}+X_{2}+\ldots+X_{N}} / N\right)\right] P(N=n) \\
& =\sum_{n=0}^{\infty} E\left(s^{X_{1}+\ldots+X_{N}}\right) \cdot P(N=n) . \text { Since } X_{i}^{\prime s} \text { and } N \text { are independent. } \\
& =\sum_{n=0}^{\infty}\left(p(s)^{n} P(N=n) ; \quad p(s) \text { is the } p g f \text { of } X_{i}\right. \\
& =P_{N}(p(s)) ; P_{N} \text { being the } p g f \text { of } N
\end{aligned}
$$

ii) $p_{I}^{\prime}\left(s_{N}\right)=P_{N}^{\prime}(p(s)) p^{\prime}(s)$

Hence $E\left(S_{N}\right)=P_{N}^{\prime}(p(l)) p^{\prime}(1)$

$$
\begin{aligned}
& =P_{N}^{\prime}(1) p^{\prime}(1) \\
& =E N . E X
\end{aligned}
$$

