## Institute of Actuaries of India

Subject CT3-Probability and Mathematical Statistics

**October/Nov 2007 Examination** 

## **INDICATIVE SOLUTION**

1. The *mgf* of Bernoulli distribution is  $M(A) = \sum_{i=1}^{K} \frac{1}{2} \frac{1}{2}$ 

$$M_X(t) = E[e^{tX}]$$
  
=  $\sum_{x=0,1} e^{tx} p^x q^{1-x}; 0 \le p \le 1$   
=  $(q+pe^t)$ 

Hence,  $M_{X_1+X_2+...+X_n}(t) = M_{X_1}(t)M_{X_2}(t)...M_{X_n}(t)$  (Since  $X_i$  are *iid*)

 $= (q+pe^{t})^{n}$ , which is the *mgf* of Binomial distribution. The sum of *n iid* Bernoulli random variables follows Binomial distribution. (Proving by other methods also is to be given marks)

Total [2]

2. 
$$P(A\overline{B} \cup \overline{AB}) = P(A\overline{B}) + P(\overline{AB})$$
, Since they are disjoint  
 $= P(A)P(\overline{B}) + P(\overline{A})P(B)$ , Since *A* and *B* are independent  
 $= 1/2 \ 1/2 + 1/2 \ 1/2$   
 $= 1/2$   
Total [3]

3. Let  $X_i$  denote the weight of *i* th container and let  $S = X_1 + X_2 + ... + X_{25}$ Given that  $X \sim N(150, 15^2)$ Then,  $E(S) = 25E(X_i)$  (since  $X_i$ 's are *iid*) = 25 x 150 = 3750 Kgs.  $Var(S) = 25Var(X_1) = 25 \times 15^2 = 5625$ Let  $Z = \frac{S - E(S)}{\sigma_s} = \frac{S - 3750}{75} \Rightarrow S = 3750 + 75Z$ If *p* is the probability of overloading the truck, then p = P(S > 4000) = P(3750 + 75Z > 4000)= P(Z > 3.333)= 0.5 - P (0 < Z < 3.333)= 0.5 - 0.4996= 0.0004

On an average, the truck shall be overloaded 4 times in 10,000 occasions.

Total [3]

## 4. Given that

P(A) = 4/9, P(B) = 2/9, P(C) = 3/9.Let *E* denote the event of introducing new insurance schemes. It is also given that P(E / A) = 0.3P(E / B) = 0.5P(E / C) = 0.8

Hence, P(E) = P(A)P(E/A) + P(B)P(E/B) + P(C) P(E/C)=  $\frac{4}{9} \cdot \frac{3}{10} + \frac{2}{9} \cdot \frac{5}{10} + \frac{3}{9} \cdot \frac{8}{10} = \frac{46}{90}$ 

Using Baye's theorem

$$P(A/E) = \frac{P(A).P(E/A)}{P(E)}$$
$$= \frac{\frac{4}{9} \times \frac{3}{10}}{\frac{46}{90}} = \frac{12}{46} = 0.26086$$

Total [4]

| Stem | Leaf |   |   |   |   |   |   |   |   |   |
|------|------|---|---|---|---|---|---|---|---|---|
| 0    | 1    | 2 | 3 | 4 | 6 | 7 | 7 | 8 | 8 |   |
| 1    | 0    | 0 | 2 | 3 | 3 | 3 | 4 | 4 | 6 | 9 |
| 2    | 1    | 4 | 5 | 6 |   | 8 |   |   |   |   |
| 3    |      | 4 | 6 |   |   |   |   |   |   |   |
| 4    |      | 1 | 5 | 7 |   |   |   |   |   |   |
| 5    |      |   | 0 |   |   |   |   |   |   |   |
| 6    |      |   |   |   |   |   |   |   |   |   |
| 7    |      |   |   |   |   |   |   |   |   |   |
| 8    |      |   |   |   |   |   |   |   |   |   |
| 9    |      |   |   |   |   |   |   |   |   |   |
|      |      |   |   |   |   |   |   |   |   |   |

| b) | CI                   | frequency |
|----|----------------------|-----------|
|    | $0 < \times \le 10$  | 9         |
|    | $10 < \times \le 20$ | 10        |
|    | $20 < \times \le 30$ | 5         |
|    | $30 < \times \le 40$ | 2         |
|    | $40 < \times \le 50$ | 3         |
|    | $50 < \times \le 60$ | 1         |
|    |                      |           |
|    |                      | N = 30    |



It is a positively skewed distribution.

Total [6]

6.a) 
$$f(x) = kxe^{-x/2}$$
;  $x > 0$   

$$\int_{0}^{\infty} f(x)dx = 1 \Rightarrow \int_{0}^{\infty} kxe^{-x/2} dx = 1$$

$$\Rightarrow k\int_{0}^{\infty} 2ue^{-u} 2du = 1 \quad \text{if } x/2 = u$$

$$\Rightarrow 4k = 1 \text{ since } \int_{0}^{\infty} e^{-u} u du = 1$$

$$\Rightarrow k = 1/4$$
b)  $M_{x}(t) = 1/4\int_{0}^{\infty} xe^{tx}e^{-x/2} dx$ 

$$= \frac{1}{4}\int_{0}^{\infty} xe^{-x(1/2-t)} dx$$

$$= \frac{1}{4}\int_{0}^{\infty} \frac{u}{(1/2-t)^{2}}e^{-u} du \quad \text{if } x(1/2-t) = u$$

$$= \frac{1}{(1-2t)^{2}}$$
 $C_{x}(t) = \log M_{x}(t) = -2\log(1-2t)$ 
c)  $EX = C'_{x}(t)|_{t=0} = 4$ 
 $V(X) = C'_{x}(t)|_{t=0} = 8$ 

Total [7]

7. Given that  $Y = log X \sim N(10, 4)$  (Logarithm to base *e*)

a) 
$$f_X(x) = \frac{1}{2x\sqrt{2\pi}} e^{\frac{1}{2}\left[\frac{\log X - 10}{2}\right]^2}$$
;  $x > 0$   
b)  $E(X) = e^{\mu_y + \frac{1}{2}\sigma_Y^2}$   
 $= e^{10 + \frac{1}{2}2(4)} = e^{12} - 162.754$   
 $V(X) = e^{2\mu_y + \sigma_Y^2} \left(e^{\sigma_Y^2} - 1\right)$   
 $= \mu_X^2 \left(e^{\sigma_Y^2} - 1\right)$   
 $= e^{24} \left(e^4 - 1\right) - 53.598e^{24}$ 

c) 
$$P[X \le 1000] = P[\log X \le \log 1000]$$
  
=  $P[Y \le \log 1000]$   
=  $P[Z \le \frac{\log 1000 - 10}{2}]; Z \sim N(0,1) \text{ (or) } 1.419 \chi_{10}^{.12}$   
=  $P(Z \le -1.55)$   
= 0.0611

Total [7]

8.a)  $H_0$ : Payment being good or delinquent is independent of person's income. From the contingency table, the expected frequencies are

$$E(45) = 40 \quad E(50) = 56$$
  

$$E(65) = 64 \quad E(5) = 10$$
  

$$E(20) = 14 \quad E(15) = 16$$

[1]

As 
$$\chi^2 = \sum \frac{(0-E)^2}{E}$$
  
= 6.417

[1]

Critical value of  $\chi^2_{0.05}(2) = 5.99$ Reject  $H_0$ .

b)  $H_0$  Payment type is independent on Income level. The contingency table is

|            | Income lev | Total |       |
|------------|------------|-------|-------|
|            | Not High   | High  | Total |
| Good       | 95         | 65    | 160   |
| Delinquent | 25         | 15    | 40    |

Proceeding as above the calculated value of  $\chi^2 = 0.130$  [1]

Critical value of  $\chi^2$  at 0.05 level is 3.84 for 1 df. Reject  $H_0$ 

Total [7]

- 9. a) A counting process  $\{N(t) : t \ge 0\}$  is said to be a Poisson process if the following conditions are satisfied
  - *i)* N(t) is independent of the number of occurrences in an interval prior to the interval (0,t)
  - ii)  $P_n(t)$  depends only on the length of the interval and is independent of where this interval is situated.
  - iii) In the interval of infinitesimal length *h*, the probability of exactly one occurrence is  $\tau h + o(h)$  ( $\tau$  is constant) and that of more than occurrence is of o(h).
  - b) Measuring time t in hours from 9.00 a.m. it is asked to determine P[X(1/2) = 1, X(5/2) = 5]

Using the independence of X(5/2) - X(1/2) and X(1/2), the question is reformulated as:

$$P[X(1/2) = 1, X(5/2) = 5] = P[X(1/2) = 1, X(51/2) - X(1/4) = 4]$$
  
=  $\left\{ \frac{e^{-4(1/2)} 4(1/2)}{1!} \right\} \left\{ \frac{e^{-4(2)} (4(2))^4}{4!} \right\}$   
=  $(2e^{-2}) \quad (e^{-8}8^4 / 4!)$   
=  $(2e^{-2}) \quad (\frac{512}{3}e^{-8})$   
= 0.0154965

Total [7]

10. a)  $H_0$  :  $\mu_1 = \mu_2 = \mu_3$ 

 $H_i$ : At least  $\mu_i^{s}$  are not equal for one *i*. From the data, the ANOVA table is

|           | SS  | Df | MSS   | F     |
|-----------|-----|----|-------|-------|
| Treatment | 516 | 2  | 258.0 | 8.990 |
| Error     | 430 | 15 | 28.7  |       |
| Total     | 946 | 17 | -     |       |

Calculated value of F value at (2,15) df is 8.990 Critical value F at (2,15) df at 0.05 level is 3.6823 Reject H<sub>0</sub>.

b) Confidence interval is  $\overline{x} \pm t_{\alpha/2} s/\sqrt{n}$ 

*s* being the estimate of population s.d.  $\sigma$ . In this ANOVA table, the best estimate of  $\sigma$  is square root of MSE which is equal to  $\sqrt{28.67} = 5.354$ For plant at *X*, the mean test score = 79 Hence, 95% confidence interval is

$$= 79 \pm 2.131 \left(\frac{5.354}{\sqrt{6}}\right)$$
  
79 ± .4.66  
= (74.34, 83.66)  
Note that  $t_{\alpha/2} = 2.131$  for 15 df. and  $\frac{\alpha}{2} = 0.025$ 

Total [8]

11. a) The marginal density of  $X_l$  is

$$= f_1(x_1) = \int_0^2 \left( x_1^2 + \frac{x_1 x_2}{3} \right) dx_2$$
$$= \begin{cases} 2x_1^2 + \frac{2}{3}x_1, & ; \ 0 < x_1 \le 1\\ 0 \ elsewhere \end{cases}$$

The conditional density of  $X_2$  given  $X_1$ 

$$f_{X_2/X_1}(x_2) = \frac{\left(x_1^2 + \frac{x_1 x_2}{3}\right)}{\left(2x_1^2 + \frac{2}{3}x_1\right)}$$
$$= \begin{cases} \frac{1}{2}\left(\frac{3x_1 + x_2}{3x_1 + 1}\right) & ; \ 0 < x_1 \le 1 \ ; \ 0 \le x_2 \le 2\\ 0 & elsewhere \end{cases}$$

b) Now 
$$E(X_2 / X_1 = x_1) = \int_0^2 x_2 \frac{1}{2} \left( \frac{3x_1 + x_2}{3x_1 + 1} \right) dx_2$$
  
=  $\frac{9x_1 + 4}{9x_1 + 3}$ 

c) 
$$E[E(X_2 / X_1 = x_1)] = \int_0^1 \left(\frac{9x_1 + 4}{9x_1 + 3}\right) \left(2x_1^2 + \frac{2}{3}x_1\right) dx_1 = \frac{10}{9}$$

The marginal density of  $X_2$  is

$$f_2(x_2) = \int_0^1 \left( x_1 + \frac{x_1 x_2}{3} \right) dx_1 = \frac{1}{3} + \frac{x_2}{6} ; \ 0 < x_2 \le 2$$

0 elsewhere

Hence, 
$$E(X_2) = \int_{0}^{2} x_2 \left(\frac{1}{3} + \frac{x_2}{6}\right) dx_2 = \frac{10}{9}$$

Total [7]

12. a) 
$$E\left(\frac{1}{X}\right) = \int_{0}^{\infty} \frac{1}{x} \frac{\theta^{m} x^{m-1} e^{-\theta x}}{(m-1)!} dx$$
  
 $= \frac{\theta^{m}}{(m-1)!} \int_{0}^{\infty} x^{m-2} e^{-\theta x} dx$   
 $= \frac{\theta^{m}}{(m-1)!} \int_{0}^{\infty} \left(\frac{u}{\theta}\right)^{m-2} e^{-u} \frac{du}{\theta} \quad if \ \theta x = u$   
 $= \frac{\theta}{m-1}$   
[2]  
Hence  $E\left(\frac{m-1}{2}\right) = \theta$ 

Hence 
$$E\left(\frac{m-1}{X}\right) = \theta$$
  
 $\Rightarrow \frac{m-1}{X}$  is an unbiased estimate of  $\theta$ .

(Marks may be awarded if the candidate adopts alternative methods for the answer)

b) Given that 
$$f(x, \theta) = (1+\theta) x^{\theta}$$
;  $0 < x < 1$   
 $L(\theta; \underline{x}) = L = (1+\theta)^n \prod x_i^{\theta}$   
 $Log L = n \log (1+\theta) + \theta (\Sigma \log x_i)$   
 $\frac{\partial \log L}{\partial \theta} = \frac{n}{1+\theta} + \Sigma \log x_i$ 

$$\Rightarrow \hat{\theta} = \frac{-n}{\Sigma \log x_i} - 1$$

Further,

$$\frac{\partial^2 \log L}{\partial \theta^2} = -\frac{n}{(1+\theta)^2} < 0 \text{ for all } \theta \text{ and hence at } \hat{\theta} = \frac{-n}{\sum \log x_i} - 1$$

Hence  $\hat{\theta}$  is the m.l.e. of  $\theta$ 

c) 
$$f(x,\theta) = \theta e^{-\theta x}; 0 < x < \infty$$
  
 $\frac{\partial}{\partial \theta} \log f(x,\theta) = \frac{\partial}{\partial \theta} [\log \theta - \theta x]$   
 $= \left(\frac{1}{\theta} - x\right)$   
and so  $E_{\theta} \left[\frac{\partial}{\partial \theta} \log f(x,\theta)\right]^2 = E_{\theta} \left(\frac{1}{\theta} - X\right)^2$   
 $= \operatorname{Var} X = \frac{1}{\theta^2}$ 

Hence, the CR lower bound for the variance of any unbiased estimator of  $\theta$  is  $\frac{\theta^2}{n}$ 

Total [10]

13.a)  $H_0: \sigma_1^2 = \sigma_2^2$   $v_s H_1: \sigma_1^2 \neq \sigma_2^2$ The test statistic is  $F = \frac{s_2^2}{s_1^2} = \frac{0.9604}{0.7225} = 1.329$ Critical value of *F* for (14,11) df at 5% level = 2.7316 Do not Reject  $H_0$ .

b)  $H_0: \mu_l = \mu_2$ ;  $H_l: \mu_l \neq \mu_2$ 

The pooled estimate of common variance  $\sigma^2$  is  $s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{(n_1 + n_2 - 2)}$ 

$$=\frac{11(0.85)^2+14(0.98)^2}{12+15-2}=0.8557$$

Hence,  $s_p = 0.925$ 

The test statistic is

$$t = \frac{|\bar{x}_1 - \bar{x}_2|}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$
  
=  $\frac{|24.6 - 22.1|}{0.925 \sqrt{\frac{1}{12} + \frac{1}{15}}} = \frac{2.5}{0.925 \sqrt{0.0833 + 0.0667}}$   
=  $\frac{2.5}{0.925 \sqrt{0.15}} = \frac{2.5}{0.925(0.3873)} = \frac{2.5}{0.3583} = 1.70874$ 

The table value of *t* at 5% level for 25 df is : 2.06 Reject H<sub>0</sub>.

c) The 95% confidence interval for  $\mu_{l} - \mu_{2}$  is  $(\overline{x}_{1} - \overline{x}_{2}) \pm t_{\alpha/2, n_{1} + n_{2} - 2_{s}} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}$ =  $\left[ (24.6 - 22.1) \pm 2.06(0.925) \sqrt{\frac{1}{12} + \frac{1}{15}} \right]$ = (-3.24, -1.76) or (1, 76, 3.24) for  $(\mu_{2} - \mu_{1})$ 

d) 95% confidence interval for  $\sigma_1^2 / \sigma_2^2$  $\frac{s_1^2}{s_2^2} F_{0.025}(14,11) \le \frac{\sigma_1^2}{\sigma_2^2} \le \frac{s_1^2}{s_2^2} F_{0.975}(14,11)$ 

Substituting the values of  $s_1^2, s_2^2$  and the table values,  $F_{0.025}(14,11)=0.3205$  and  $F_{0.975}(14,11)=3.43$  we have the 95% CI as  $0.3205(1/1.329) \le \frac{\sigma_1^2}{\sigma_2^2} \le 3.43(1/1.329)$  which results in  $\{0.2411 \le \frac{\sigma_1^2}{\sigma_2^2} \le 2.581\}$ .

(use the fact that  $F_{0.025}(14,11) = \frac{1}{F_{0.975}(11,14)} = 0.3205$ )

Total [11]

14.a)



The scatter diagram indicates that there is a strong relationship between the number of claims and the number of settlements and assumption of the straight line model  $Y=\beta_0+\beta_1X+\epsilon$  appears to be reasonable. b) From the data, we have

$$n = 10, \qquad \Sigma X_i = 1450$$
  

$$\Sigma Y_i = 673, \quad \overline{X} = 145, \quad \overline{Y} = 67.3$$
  

$$\Sigma X_i^2 = 218500 \qquad \Sigma Y_i^2 = 47225$$
  

$$\Sigma XY = 101570$$
  

$$S_{XX} = \Sigma X_i - \frac{1}{10} (\Sigma X_i)^2$$
  

$$= 218500 - \frac{(1450)^2}{10} = 8250$$
  

$$S_{YY} = \Sigma Y_i^2 - n\overline{Y}^2$$
  

$$= 47225 - 10 (67.3)^2$$
  

$$= 1932.10$$
  

$$S_{XY} = \Sigma X_i Y_i - \frac{1}{10} (\Sigma X_i) (\Sigma Y_i)$$

$$= 101570 - \frac{(1450)(673)}{10} = 3985$$
  
Therefore  $\hat{\beta} = \frac{S_{XY}}{S_{XX}} = \frac{3985}{8250} = 0.483$   
 $\hat{\alpha} = \overline{Y} - \hat{\beta} \overline{X}$   
 $= 67.3 - (0.483)145$   
 $= -2.739$   
c)  $\hat{\sigma}^2 = \frac{SSE}{n-2}$   
 $SSE = S_{YY} - S_2^{XY} / S_{XX}$   
 $= 1932.10 - \frac{3985^2}{8250}$   
 $= 1932.10 - 1924.87$   
 $= 7.23$   
Hence  $\sigma^2 = \frac{SSE}{n-2} = \frac{7.23}{8} = 0.90$ 

d)  $H_0: \beta = 0$ ;  $H_1: \beta \neq 0$ . The following ANOVA table is needed.

| Source of  | S.S.    | df | MSS    | F       |
|------------|---------|----|--------|---------|
| variation  |         |    |        |         |
| Regression | 1924.9  | 1  | 1924.9 | 2131.57 |
| Error      | 7.2     | 8  | 0.9    |         |
| Total      | 1932.10 | 9  |        |         |

Table F(1,8) at 0.05 level of significance is 5.32at 0.01 level of significance is 11.30

Reject  $H_0$ 

NOTE: This test can also be carried out using a t-test. The calculated value for t is the square root of F which is 46.17, at 8 degrees of freedom. The table value is 2.306. We reject H<sub>0</sub>.

e) 95% confidence for  $\beta$  is

$$\begin{split} & \hat{\beta} + t_{0.025}(8) \sqrt{\frac{MSE}{S_{XX}}} \le \beta \le \hat{\beta} + t_{0.975}(8) \sqrt{\frac{MSE}{S_{XX}}} \\ &= 0.483 - 2.306 \sqrt{\frac{0.90}{8250}} \le \beta \le 0.483 + 2.306 \sqrt{\frac{0.90}{8250}} \\ &= 0.459 \le \beta \le 0.507. \end{split}$$

f) 
$$H_0: \rho = 0; H_1: \rho \neq 0$$
  
 $r(x, y) = \frac{S_{XY}}{(S_{XX}S_{YY})^{1/2}} = \frac{3985}{\sqrt{8250}\sqrt{1932.10}} = 0.99814$   
 $t = \frac{|r|\sqrt{n-2}}{\sqrt{1-r^2}}$   
 $= \frac{0.99814 \times \sqrt{8}}{\sqrt{0.00372}} = 46.288$   
Calculated value of  $t = 46.288$   
Table value of  $t$  at 5% level with 8 degrees of freedom is 2.306.  
Reject  $H_0$ .

Total [17]

<u>NOTE</u>: There is a printing error in Q14(f) which might have been rectified later. The hypothesis to be tested is  $H_0: \rho = 0$  against  $H_1: \rho \neq 0$ . However, if any candidate has tested for  $H_0: \rho = 0.75$  against  $H_1: \rho \neq 0.75$  using Z-transformation, the marks can be awarded according to the correctness of the computation.

\*\*\*\*\*