Institute of Actuaries of India

Subject CT3-Probability and Mathematical Statistics

October/Nov 2007 Examination

INDICATIVE SOLUTION

1. The $m g f$ of Bernoulli distribution is

$$
\begin{aligned}
M_{X}(t) & =E\left[e^{t X}\right] \\
& =\sum_{x=0,1} e^{t x} p^{x} q^{1-x} ; 0<p<1 \\
& =\left(q+p e^{t}\right)
\end{aligned}
$$

Hence, $M_{X_{1}+X_{2}+\ldots+X_{n}}(t)=M_{X_{1}}(t) M_{X_{1}}(t) \ldots M_{X_{n}}(t)$ (Since X_{i} are iid)

$$
=\left(q+p e^{t}\right)^{n} \text {, which is the } m g f \text { of Binomial distribution. }
$$

The sum of n iid Bernoulli random variables follows Binomial distribution.
(Proving by other methods also is to be given marks)
2. $P(A \bar{B} \cup \bar{A} B)=P(A \bar{B})+P(\bar{A} B)$, Since they are disjoint

$$
\begin{aligned}
& =P(A) P(\bar{B})+P(\bar{A}) P(B), \text { since } A \text { and } B \text { are independent } \\
& =1 / 21 / 2+1 / 21 / 2 \\
& =1 / 2
\end{aligned}
$$

Total [3]
3. Let X_{i} denote the weight of i th container and let $S=X_{1}+X_{2}+\ldots+X_{25}$

Given that $X \sim N\left(150,15^{2}\right)$
Then, $E(S)=25 E\left(X_{i}\right)$ (since $X_{i}^{\prime} s$ are iid)

$$
=25 \times 150=3750 \text { Kgs. }
$$

$\operatorname{Var}(S)=25 \operatorname{Var}\left(X_{1}\right)=25 \times 15^{2}=5625$
Let $Z=\frac{S-E(S)}{\sigma_{s}}=\frac{S-3750}{75} \Rightarrow S=3750+75 Z$
If p is the probability of overloading the truck, then

$$
\begin{aligned}
p=P(S>4000) & =P(3750+75 Z>4000) \\
& =P(Z>3.333) \\
& =0.5-P(0<Z<3.333) \\
& =0.5-0.4996 \\
& =0.0004
\end{aligned}
$$

On an average, the truck shall be overloaded 4 times in 10,000 occasions.
Total [3]
4. Given that

$$
P(A)=4 / 9, P(B)=2 / 9, P(C)=3 / 9
$$

Let E denote the event of introducing new insurance schemes.
It is also given that

$$
\left.\begin{array}{l}
P(E / A)=0.3 \\
P(E / B)=0.5 \\
P(E / C)=0.8
\end{array}\right\}
$$

Hence, $P(E)=P(A) P(E / A)+P(B) P(E / B)+P(C) P(E / C)$

$$
=\frac{4}{9} \cdot \frac{3}{10}+\frac{2}{9} \cdot \frac{5}{10}+\frac{3}{9} \cdot \frac{8}{10}=\frac{46}{90}
$$

Using Baye's theorem

$$
\begin{aligned}
P(A / E) & =\frac{P(A) \cdot P(E / A)}{P(E)} \\
& =\frac{\frac{4}{9} \times \frac{3}{10}}{\frac{46}{90}}=\frac{12}{46}=0.26086
\end{aligned}
$$

5. a)

Stem	Leaf									
0	1	2	3	4	6	7	7	8	8	
1	0	0	2	3	3	3	4	4	6	9
2	1	4	5	6		8				
3		4	6							
4		1	5	7						
5			0							
6										
7										
8										
9										

b) | $C I$ | frequency |
| :---: | :---: |
| $0<x \leq 10$ | 9 |
| $10<x \leq 20$ | 10 |
| $20<x \leq 30$ | 5 |
| $30<x \leq 40$ | 2 |
| $40<x \leq 50$ | 3 |
| $50<x \leq 60$ | 1 |
| | ------- |
| | $\mathrm{N}=30$ |

It is a positively skewed distribution.
6.a) $f(x)=k x e^{-x / 2} \quad ; \quad x>0$

$$
\begin{aligned}
\int_{0}^{\infty} f(x) d x=1 & \Rightarrow \int_{0}^{\infty} k x e^{-x / 2} d x=1 \\
& \Rightarrow k \int_{0}^{\infty} 2 u e^{-u} 2 d u=1 \quad \text { if } x / 2=u \\
& \Rightarrow 4 k=1 \text { since } \int_{0}^{\infty} e^{-u} u d u=1 \\
& \Rightarrow k=1 / 4
\end{aligned}
$$

b) $M_{x}(t)=1 / 4 \int_{0}^{\infty} x e^{t x} e^{-x / 2} d x$

$$
=\frac{1}{4} \int_{0}^{\infty} x e^{-x(1 / 2-t)} d x
$$

$$
=\frac{1}{4} \int_{0}^{\infty} \frac{u}{(1 / 2-t)^{2}} e^{-u} d u \quad \text { if } x(1 / 2-t)=u
$$

$$
=\frac{1}{(1-2 t)^{2}}
$$

$$
C_{x}(t)=\log M_{x}(t)=-2 \log (1-2 t)
$$

c) $E X=\left.C_{x}^{\prime}(t)\right|_{t=0}=4$
$V(X)=\left.C_{x}^{\prime \prime}(t)\right|_{t=0}=8$
7. Given that $Y=\log X \sim N(10,4)$ (Logarithm to base e)
a) $f_{X}(x)=\frac{1}{2 x \sqrt{2 \pi}} e^{\frac{1}{2\left[\frac{\log X-10}{2}\right]^{2}}} ; x>0$
b) $E(X)=e^{\mu_{y}+\frac{1}{2} \sigma_{\gamma}^{2}}$

$$
\begin{aligned}
& =e^{10+\frac{1}{2} 2(4)}=e^{12} \simeq 162.754 \\
& V(X)=e^{2 \mu_{Y}+\sigma_{X}^{2}}\left(e^{\sigma_{X}^{2}}-1\right) \\
& \quad=\mu_{X}^{2}\left(e^{\sigma_{Y}^{2}}-1\right) \\
& \quad=e^{24}\left(e^{4}-1\right) \simeq 53.598 e^{24}
\end{aligned}
$$

c) $P[X \leq 1000]=P[\log X \leq \log 1000]$
$=P[Y \leq \log 1000]$
$=P\left[Z \leq \frac{\log 1000-10}{2}\right] ; Z \sim N(0,1)$ (or) $1.419 \chi_{10}^{12}$
$=P(Z \leq-1.55)$

$$
=0.0611
$$

Total [7]
8.a) H_{0} : Payment being good or delinquent is independent of person's income.

From the contingency table, the expected frequencies are

$$
\left.\begin{array}{lc}
E(45)=40 & E(50)=56 \\
E(65)=64 & E(5)=10 \\
E(20)=14 & E(15)=16
\end{array}\right\}
$$

[1]

$$
\text { As } \begin{aligned}
\chi^{2} & =\sum \frac{(0-E)^{2}}{E} \\
& =6.417
\end{aligned}
$$

[1]
Critical value of $\chi_{0.05}^{2}(2)=5.99$
Reject H_{0}.
b) $H_{0} \quad$ Payment type is independent on Income level.

The contingency table is

	Income level		Total
	Not High	High	
Good	95	65	160
Delinquent	25	15	40

Proceeding as above the calculated value of $\chi^{2}=0.130$
[1]
Critical value of χ^{2} at 0.05 level is 3.84 for 1 df .
Reject H_{0}.
9. a) A counting process $\{N(t) ; t \geq 0\}$ is said to be a Poisson process if the following conditions are satisfied
i) $\quad N(t)$ is independent of the number of occurrences in an interval prior to the interval $(0, t)$
ii) $\quad P_{n}(t)$ depends only on the length of the interval and is independent of where this interval is situated.
iii) In the interval of infinitesimal length h, the probability of exactly one occurrence is $\tau h+o(h)$ (τ is constant) and that of more than occurrence is of $o(h)$.
b) Measuring time t in hours from 9.00 a.m. it is asked to determine

$$
P[X(1 / 2)=1, X(5 / 2)=5]
$$

Using the independence of $X(5 / 2)-X(1 / 2)$ and $X(1 / 2)$, the question is reformulated as:

$$
\begin{aligned}
P[X(1 / 2)=1, & X(5 / 2)=5]=P[X(1 / 2)=1, X(51 / 2)-X(1 / 4)=4] \\
& =\left\{\frac{e^{-4(1 / 2)} 4(1 / 2)}{1!}\right\}\left\{\frac{e^{-4(2)}(4(2))^{4}}{4!}\right\} \\
& =\left(2 e^{-2}\right) \quad\left(e^{-8} 8^{4} / 4!\right) \\
& =\left(2 e^{-2}\right)\left(\frac{512}{3} e^{-8}\right) \\
& =0.0154965
\end{aligned}
$$

10. a) $H_{0}: \mu_{I}=\mu_{2}=\mu_{3}$
H_{l} : At least μ_{i}^{s} are not equal for one i.
From the data, the ANOVA table is

	SS	Df	MSS	F
Treatment	516	2	258.0	8.990
Error	430	15	28.7	
Total	946	17	-	

Calculated value of F value at $(2,15)$ df is 8.990
Critical value F at $(2,15)$ df at 0.05 level is 3.6823
Reject H_{0}.
b) Confidence interval is $\bar{x} \pm t_{\alpha / 2} s / \sqrt{n}$
s being the estimate of population s.d. σ. In this ANOVA table, the best estimate of σ is square root of MSE which is equal to $\sqrt{28.67}=5.354$
For plant at X, the mean test score $=79$
Hence, 95% confidence interval is

$$
\begin{aligned}
& =79 \pm 2.131\left(\frac{5.354}{\sqrt{6}}\right) \\
& 79 \pm .4 .66 \\
& =(74.34,83.66)
\end{aligned}
$$

Note that $t_{\alpha / 2}=2.131$ for 15 df . and $\frac{\alpha}{2}=0.025$
Total [8]
11. a) The marginal density of X_{1} is

$$
\begin{aligned}
& =f_{1}\left(x_{1}\right)=\int_{0}^{2}\left(x_{1}^{2}+\frac{x_{1} x_{2}}{3}\right) d x_{2} \\
& =\left\{\begin{array}{l}
2 x_{1}^{2}+\frac{2}{3} x_{1}, ; 0<x_{1} \leq 1 \\
0 \text { elsewhere }
\end{array}\right.
\end{aligned}
$$

The conditional density of X_{2} given X_{1}

$$
\begin{aligned}
f_{X_{2} / X_{1}}\left(x_{2}\right) & =\frac{\left(x_{1}^{2}+\frac{x_{1} x_{2}}{3}\right)}{\left(2 x_{1}^{2}+\frac{2}{3} x_{1}\right)} \\
& =\left\{\begin{array}{l}
\frac{1}{2}\left(\frac{3 x_{1}+x_{2}}{3 x_{1}+1}\right) \quad ; 0<x_{1} \leq 1 ; 0 \leq x_{2} \leq 2 \\
0 \text { elsewhere }
\end{array}\right.
\end{aligned}
$$

b) Now $E\left(X_{2} / X_{1}=x_{1}\right)=\int_{0}^{2} x_{2} \frac{1}{2}\left(\frac{3 x_{1}+x_{2}}{3 x_{1}+1}\right) d x_{2}$

$$
=\frac{9 x_{1}+4}{9 x_{1}+3}
$$

c) $E\left[E\left(X_{2} / X_{1}=x_{1}\right)\right]=\int_{0}^{1}\left(\frac{9 x_{1}+4}{9 x_{1}+3}\right)\left(2 x_{1}^{2}+\frac{2}{3} x_{1}\right) d x_{1}=\frac{10}{9}$

The marginal density of X_{2} is

$$
f_{2}\left(x_{2}\right)=\int_{0}^{1}\left(x_{1}+\frac{x_{1} x_{2}}{3}\right) d x_{1}=\frac{1}{3}+\frac{x_{2}}{6} ; 0<x_{2} \leq 2
$$

0 elsewhere

Hence, $E\left(X_{2}\right)=\int_{0}^{2} x_{2}\left(\frac{1}{3}+\frac{x_{2}}{6}\right) d x_{2}=\frac{10}{9}$
12. a) $E\left(\frac{1}{X}\right)=\int_{0}^{\infty} \frac{1}{x} \frac{\theta^{m} x^{m-1} e^{-\theta x}}{(m-1)!} d x$

$$
\begin{aligned}
& =\frac{\theta^{m}}{(m-1)!} \int_{0}^{\infty} x^{m-2} e^{-\theta x} d x \\
& =\frac{\theta^{m}}{(m-1)!} \int_{0}^{\infty}\left(\frac{u}{\theta}\right)^{m-2} e^{-u} \frac{d u}{\theta} \text { if } \theta x=u \\
& =\frac{\theta}{m-1}
\end{aligned}
$$

[2]

$$
\text { Hence } E\left(\frac{m-1}{X}\right)=\theta
$$

$\Rightarrow \frac{m-1}{X}$ is an unbiased estimate of θ.
(Marks may be awarded if the candidate adopts alternative methods for the answer)
b) Given that $f(x, \theta)=(1+\theta) x^{\theta} \quad ; 0<x<1$

$$
\begin{aligned}
& L(\theta ; \underline{x})=L=(1+\theta)^{n} \Pi x_{i}^{\theta} \\
& \log L=n \log (1+\theta)+\theta\left(\Sigma \log x_{i}\right) \\
& \frac{\partial \log L}{\partial \theta}=\frac{n}{1+\theta}+\Sigma \log x_{i} \\
& \Rightarrow \hat{\theta}=\frac{-n}{\Sigma \log x_{i}}-1
\end{aligned}
$$

Further,

$$
\frac{\partial^{2} \log L}{\partial \theta^{2}}=-\frac{n}{(1+\theta)^{2}}<0 \text { for all } \theta \text { and hence at } \hat{\theta}=\frac{-n}{\Sigma \log x_{i}}-1
$$

Hence $\hat{\theta}$ is the m.l.e. of θ
c) $f(x, \theta)=\theta e^{-\theta x} ; 0<x<\infty$

$$
\begin{aligned}
\frac{\partial}{\partial \theta} \log f(x, \theta) & =\frac{\partial}{\partial \theta}[\log \theta-\theta x] \\
& =\left(\frac{1}{\theta}-x\right)
\end{aligned}
$$

and so $E_{\theta}\left[\frac{\partial}{\partial \theta} \log f(x, \theta)\right]^{2}=E_{\theta}\left(\frac{1}{\theta}-X\right)^{2}$

$$
=\operatorname{Var} \mathrm{X}=\frac{1}{\theta^{2}}
$$

Hence, the CR lower bound for the variance of any unbiased estimator of θ is $\frac{\theta^{2}}{n}$
13.a) $H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2} \quad v_{s} H_{1}: \sigma_{1}^{2} \neq \sigma_{2}^{2}$

The test statistic is
$F=\frac{s_{2}^{2}}{s_{1}^{2}}=\frac{0.9604}{0.7225}=1.329$
Critical value of F for $(14,11)$ df at 5% level $=2.7316$
Do not Reject H_{0}.
b) $H_{0}: \mu_{l}=\mu_{2} ; \quad H_{l}: \mu_{l} \neq \mu_{2}$

The pooled estimate of common variance σ^{2} is $s_{p}^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{\left(n_{1}+n_{2}-2\right)}$

$$
=\frac{11(0.85)^{2}+14(0.98)^{2}}{12+15-2}=0.8557
$$

Hence, $s_{p}=0.925$
The test statistic is

$$
\begin{aligned}
t & =\frac{\left|\bar{x}_{1}-\bar{x}_{2}\right|}{s_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \\
& =\frac{|24.6-22.1|}{0.925 \sqrt{\frac{1}{12}+\frac{1}{15}}}=\frac{2.5}{0.925 \sqrt{0.0833+0.0667}} \\
& =\frac{2.5}{0.925 \sqrt{0.15}}=\frac{2.5}{0.925(0.3873)}=\frac{2.5}{0.3583}=1.70874
\end{aligned}
$$

The table value of t at 5% level for 25 df is : 2.06
Reject H_{0}.
c) The 95% confidence interval for $\mu_{1}-\mu_{2}$ is $\left(\bar{x}_{1}-\bar{x}_{2}\right)_{ \pm t_{\alpha / 2, n_{1}+n_{2}-2 s} s}^{\frac{1}{n_{1}}+\frac{1}{n_{2}}}$

$$
\begin{aligned}
& =\left[(24.6-22.1) \pm 2.06(0.925) \sqrt{\frac{1}{12}+\frac{1}{15}}\right] \\
& =(-3.24,-1.76) \text { or }(1,76,3.24) \text { for }\left(\mu_{2}-\mu_{1}\right)
\end{aligned}
$$

d) 95% confidence interval for $\sigma_{1}^{2} / \sigma_{2}^{2}$

$$
\frac{s_{1}^{2}}{s_{2}^{2}} F_{0.025}(14,11) \leq \frac{\sigma_{1}^{2}}{\sigma_{2}^{2}} \leq \frac{s_{1}^{2}}{s_{2}^{2}} F_{0.975}(14,11)
$$

Substituting the values of s_{1}^{2}, s_{2}^{2} and the table values, $\mathrm{F}_{0.025}(14,11)=0.3205$ and $\mathrm{F}_{0.975}(14,11)=3.43$ we have the 95% CI as $0.3205(1 / 1.329) \leq \frac{\sigma_{1}^{2}}{\sigma_{2}^{2}} \leq 3.43(1 / 1.329)$ which results in $\left\{0.2411 \leq \frac{\sigma_{1}^{2}}{\sigma_{2}^{2}} \leq 2.581\right\}$.
(use the fact that $\left.F_{0.025}(14,11)=\frac{1}{F_{0.975}(11,14)}=0.3205\right)$
Total [11]
14.a)

The scatter diagram indicates that there is a strong relationship between the number of claims and the number of settlements and assumption of the straight line model $Y=\beta_{0}+\beta_{1} X+€$ appears to be reasonable.
b) From the data, we have

$$
\begin{aligned}
n & =10, \quad \Sigma X_{i}=1450 \\
\Sigma Y_{i} & =673, \bar{X}=145, \bar{Y}=67.3 \\
\Sigma X_{i}^{2} & =218500 \quad \Sigma Y_{i}^{2}=47225 \\
\Sigma X Y & =101570 \\
S_{X X} & =\Sigma X_{i}-\frac{1}{10}\left(\Sigma X_{i}\right)^{2} \\
& =218500-\frac{(1450)^{2}}{10}=8250 \\
S_{Y Y} & =\Sigma Y_{i}^{2}-n \bar{Y}^{2} \\
& =47225-10(67.3)^{2} \\
& =1932.10 \\
S_{X Y} & =\Sigma X_{i} Y_{i}-\frac{1}{10}\left(\Sigma X_{i}\right)\left(\Sigma Y_{i}\right)
\end{aligned}
$$

$$
=101570-\frac{(1450)(673)}{10}=3985
$$

Therefore $\hat{\beta}=\frac{S_{X Y}}{S_{X X}}=\frac{3985}{8250}=0.483$

$$
\begin{aligned}
\hat{\alpha} & =\bar{Y}-\hat{\beta} \bar{X} \\
& =67.3-(0.483) 145 \\
& =-2.739
\end{aligned}
$$

c) $\hat{\sigma}^{2}=\frac{\operatorname{SSE}}{n-2}$

$$
\begin{aligned}
S S E & =S_{Y Y}-S_{2}^{X Y} / S_{X X} \\
& =1932.10-\frac{3985^{2}}{8250} \\
& =1932.10-1924.87 \\
& =7.23
\end{aligned}
$$

Hence $\sigma^{2}=\frac{S S E}{n-2}=\frac{7.23}{8}=0.90$
d) $H_{0}: \beta=0 ; H_{l}: \beta \neq 0$. The following ANOVA table is needed.

Source of variation	S.S.	df	MSS	F
Regression	1924.9	1	1924.9	2131.57
Error	7.2	8	0.9	
Total	1932.10	9		

Table $F(1,8)$ at 0.05 level of significance is 5.32 at 0.01 level of significance is 11.30
Reject H_{0}
NOTE: This test can also be carried out using a t-test. The calculated value for t is the square root of F which is 46.17 , at 8 degrees of freedom. The table value is 2.306. We reject H_{0}.
e) 95% confidence for β is

$$
\begin{aligned}
& \hat{\beta}+t_{0.025}(8) \sqrt{\frac{M S E}{S_{X X}}} \leq \beta \leq \hat{\beta}+t_{0.975}(8) \sqrt{\frac{M S E}{S_{X X}}} \\
& \quad=0.483-2.306 \sqrt{\frac{0.90}{8250}} \leq \beta \leq 0.483+2.306 \sqrt{\frac{0.90}{8250}} \\
& \quad=0.459 \leq \beta \leq 0.507 .
\end{aligned}
$$

f) $H_{0}: \rho=0 ; H_{1}: \rho \neq 0$
$r(x, y)=\frac{S_{X Y}}{\left(S_{X X} S_{Y Y}\right)^{1 / 2}}=\frac{3985}{\sqrt{8250} \sqrt{1932.10}}=0.99814$

$$
\begin{aligned}
& t=\frac{|r| \sqrt{n-2}}{\sqrt{1-r^{2}}} \\
& =\frac{0.99814 \times \sqrt{8}}{\sqrt{0.00372}}=46.288
\end{aligned}
$$

Calculated value of $t=46.288$
Table value of t at 5% level with 8 degrees of freedom is 2.306.
Reject H_{0}.
Total [17]
NOTE: There is a printing error in Q14(f) which might have been rectified later. The hypothesis to be tested is $H_{0}: \rho=0$ against $H_{l}: \rho \neq 0$. However, if any candidate has tested for $H_{0}: \rho=0.75$ against $H_{l}: \rho \neq 0.75$ using Z-transformation, the marks can be awarded according to the correctness of the computation.

