Institute of Actuaries of India

Subject CT1 - Financial Mathematics

October 2014 Examination

Solution 1:

i. $i=1.12^{\frac{1}{2}}-1=5.83 \%$
ii. $\mathrm{i}=\frac{\mathrm{d}}{1-\mathrm{d}}=6.38 \%$
iii. $i=e^{12 \times 0.01}-1=12.75 \%$
iv. $i=\left(1-\frac{\mathrm{d}^{(\epsilon)}}{4}\right)^{-4}-1=8.416 \%$
v. $1+i=\left(1+\frac{i(p)}{p}\right)^{p}=\left(1+\frac{0.12}{\frac{1}{2}}\right)^{0.5}=11.35 \%$

Solution 2:

(i) (a) the duration is:

$$
\begin{aligned}
& =\quad \frac{8000\left(v+2 v^{2}+3 v^{3}+\ldots .+15 v^{15}\right)}{8000\left(v+v^{2}+v^{3}+\ldots .+v^{15}\right)} \text { at } 9 \% \\
& =\quad\left(\text { Ia) } 15^{-\mid} / a_{15} \mid=51.8676 / 8.0607\right. \\
& =6.4346 \text { years }
\end{aligned}
$$

(b) The duration is:

$$
\begin{aligned}
& =\frac{8000\left(\mathrm{v}+\left(1.09 \mathrm{x} \mathrm{2}^{2}\right)+\left(1.092 \times 3 \mathrm{v}^{3}\right)+\ldots .+\left(1.0914 \times 15 \mathrm{v}^{15}\right)\right.}{8000\left(\mathrm{v}+\left(1.09 \mathrm{x} \mathrm{v}^{2}\right)+\left(1.092 \mathrm{x} \mathrm{v}^{3}\right)+\ldots .+\left(1.0914 \mathrm{x} \mathrm{v}^{15}\right)\right.} \text { at } 9 \% \\
& =\mathrm{v}(1+2+3+\ldots+15) / \mathrm{v}(1+1+1+\ldots .+1) \\
& =120 / 15=8 \text { years }
\end{aligned}
$$

(ii) The duration in (i) (b) is higher because the payments increase over time so that the weighting of the payments is more towards end of the series of payments.

Solution 3:

Forward price of the contract is $K_{0}=\left(S_{0}-I\right) e^{\delta T}=(91-I) e^{0.09 * 1}$
Where I is the present value of the income expected during the contract $=3.8 \mathrm{e}^{-0.09 \% 6 / 12}$

$$
\Rightarrow K_{0}=\left(91-3.8 \mathrm{e}^{-0.09 * 6 / 12}\right) \mathrm{e}^{0.09}=95.595
$$

Forward price of contract set up at time r (4 months) is

$$
\mathrm{K}_{r}=\left(\mathrm{S}_{r}-\mathrm{I}^{r}\right) \mathrm{e}^{\delta(T-r)}=\left(109-\mathrm{I}^{r}\right) \mathrm{e}^{0.085: 8 / 12}
$$

Where I^{r} is the present value of the income expected during the contract $=3.8$
$e^{-0.08 \xi^{2} / 112}$

$$
\Rightarrow \mathrm{K}_{r}=\left(109-3.8 \mathrm{e}^{-0.08 \Psi^{*} / 12}\right) \mathrm{e}^{0.088^{* 8 / 12}}=111.39
$$

Value of original forward contract $=\left(\mathrm{K}_{r}-\mathrm{K}_{0}\right) \mathrm{e}^{-\delta(T-r)}$

$$
\begin{aligned}
& =(111.39-95.595) \mathrm{e}^{-0.088^{588} / 12} \\
& =₹ 14.9248
\end{aligned}
$$

[6 Marks]

Solution 4:

(i) $\left(1+\mathrm{i}_{t}\right) \sim \operatorname{Lognormal}\left(\mu, \sigma^{2}\right)$

$$
\begin{aligned}
& \ln \left(1+\mathrm{i}_{t}\right) \sim \mathrm{N}\left(\mu, \sigma^{2}\right) \\
& \ln \left(1+\mathrm{i}_{t}\right)^{12}=\ln \left(1+\mathrm{i}_{t}\right)+\ln \left(1+\mathrm{i}_{t}\right)+\ldots \ldots+\ln \left(1+\mathrm{i}_{t}\right)=\mathrm{N}\left(12 \mu, 12 \sigma^{2}\right)
\end{aligned}
$$

Since i_{t} 's are independent,

$$
\begin{aligned}
& \left(1+\mathrm{i}_{t}\right)^{12}=\operatorname{Lognormal}\left(12 \mu, 12 \sigma^{2}\right) \\
& \mathrm{E}\left(1+\mathrm{i}_{t}\right)=\exp \left(\mu+\sigma^{2} / 2\right)=1.09 \\
& \operatorname{Var}\left(1+\mathrm{i}_{t}\right)=\exp \left(2 \mu+\sigma^{2}\right)\left[\exp \left(\sigma^{2}\right)-1\right]=0.1^{2} \\
& 0.1^{2} / 1.09^{2} \quad=\left[\exp \left(\sigma^{2}\right)-1\right] \Rightarrow \sigma^{2}=0.0083815 \\
& \exp (\mu+0.0083815 / 2)=1.09 \\
& \mu=\ln 1.09-0.0083815 / 2=0.081986 \\
& 12 \mu=0.983832,12 \sigma^{2}=0.100578
\end{aligned}
$$

Assuming S_{12} being the accumulation of 1 unit in 12 years' time,
$E\left(S_{12}\right)=\exp (0.983832+0.100578 / 2)=2.81263$
Expected value of investment $=₹ 12,00,000 \mathrm{E}\left(\mathrm{S}_{12}\right)=₹ 33,75,156$
[5]
(ii) We require $\quad \mathrm{P}\left[\mathrm{S}_{12}<0.9 \times 2.81263=2.53136\right]$

$$
\begin{aligned}
& P\left[\ln S_{12}<\ln 2.53136\right], \text { where } \ln S_{12} \sim N(0.983832,0.100578) \\
& \Rightarrow P[N(0,1)<(\ln 2.53136-0.983832) / \sqrt{ }(0.100578)] \\
& \Rightarrow P[N(0,1)<-0.1736] \approx 0.43 \approx 43 \%
\end{aligned}
$$

Solution 5:
i. $\quad 1,000 \mathrm{~A}(2,22)=1,000\left[e^{\int^{\frac{1}{2}} 0.04 d t} X e^{\int^{22}(0.005 t) d t} \times e^{\int_{20}^{22}\left(0.003 t+0.0002 t^{2}\right) d t}\right]$

$$
\begin{aligned}
& e^{\int_{2}^{18} 0.04 d t} \quad=1.27125 \\
& e^{\int_{2}^{20} 0.005 t d t}=2.316 \\
& e^{\int_{20}^{22}\left(0.003 t+0.0002 t^{2}\right) d t}=\left[\frac{0.003 t^{2}}{2}+\frac{0.0002 t^{3}}{3}\right]_{20}^{22} \\
& =(0.726+0.7098)-(0.6+0.5333) \\
& =1.3532
\end{aligned}
$$

Accumulated value $=₹ 1,000$ X 1.27125 X 2.316X1.3532 $=₹ 3,984.11$
ii. The effective rate of interest per annum =
$1,000 \mathrm{X}(1+i)^{20}=3,984.11$

$$
\begin{aligned}
& (1+\mathrm{i})=1.0716 \\
& \mathrm{~d}^{(12)}=12\left[1-(1+\mathrm{i})^{-\left(\frac{1}{12}\right)}\right]
\end{aligned}
$$

$$
=0.0689
$$

(OR)

$$
\begin{aligned}
& 3,984.11\left\{1-\frac{\mathrm{d}^{(12)}}{12}\right\}^{20 \times 12}=1,000 \\
& \mathrm{~d}^{(12)}=0.0689
\end{aligned}
$$

```
iii. \(\quad e^{\int_{10}^{20} 0.005 t d t}=1.1024\)
    \(\therefore i=10.24 \%\)
iv. \(\quad v(t)=e^{-\int_{0}^{t} 0.04 d s}=e^{-0.04 t}\)
\[
\rho(t)=e^{-0.03 t}
\]
\(\therefore\) Present value of paymen stream \(=\int_{0}^{4} \mathrm{e}^{-0.03 t} \mathrm{e}^{-0.04 t} \mathrm{dt}=\int_{0}^{4} \mathrm{e}^{-0.07 \mathrm{t}} \mathrm{dt}\)
\(=\left[\frac{-\mathrm{e}^{-0.077}}{0.07}\right]_{6}^{4}\)
\[
=3.489
\]
```


Solution 6:

i. The price of the bonds may have fallen because interest rates have risen or because their risk has increased (for example credit risk).
ii. a) Money weighted rate of return " i " is:
$91,000(1+i)^{5}+860,000(1+i)^{3}=1,100,000$

On interpolation, $\mathrm{i}=4.65 \%$ (Exact answer is 4.652%)
b) $(1+i)^{5}=\frac{93000}{91000} \times \frac{86000}{98000} \times \frac{1023000}{946000} \times \frac{1067000}{1023000} \times \frac{1100000}{1067000}=\frac{86000}{91000} \times \frac{1100000}{946000}=1.0989$

$$
\begin{equation*}
i=1.9 \% \operatorname{Per} \text { annum } \tag{2}
\end{equation*}
$$

iii. a) Money weighted rate of return " i " is:

$$
\begin{aligned}
91,000(1+i)^{5}+ & 93,000(1+i)^{4}+86,000(1+i)^{1}+93,000(1+i)^{2} \\
+ & 97,000(1+i)=500,000
\end{aligned}
$$

Substituting i=4.65\%, LHS of above equation will be ₹ $527,685 /-$.
The above indicates that the money-weighted rate of return for the Fund manager Y is lower when compared to the Fund Manager X.
b)

$$
\begin{align*}
& (1+i)^{5}=\frac{93,000}{91,000} \times \frac{172,000}{93,000+93,000} \times \frac{279,000}{172,000+86,000} \times \frac{388,000}{279,000+93,000} \times \frac{500,000}{388,000+97,000} \\
& (1+i)^{5}=1.0989 \\
& =>i=1.9 \% \text { per annum. } \tag{3}
\end{align*}
$$

[11 Marks]

Solution 7:

(i) Let ' t ' be the discounted payback period.

Then $-720,000+84,000 \mathrm{a}_{-\mathrm{t}}^{(2)}=0 @ 6 \%$ p.a
$\frac{i}{i^{(2)}}$ a $\neg_{\mathrm{t}}=\frac{720000}{84000} @ 6 \%$ p.a
$=>1.014782 a_{a_{t}}=8.5714$
$a \neg_{t}=8.4465$
$\frac{1-\left(\frac{1}{1.06}\right)^{t}}{0.06}=8.4465$
$\left(\frac{1}{1.06}\right)^{\mathrm{t}}=0.49321$
tlog $\left(\frac{1}{1.06}\right)=\log 0.49321$
$\mathrm{t}=12.13 \mathrm{yrs}$
Otherwise, this can be arrived by using interpolation of $a \neg n$ factors @ 6% using tables.
Therefore, DPP $=12.5 \mathrm{yrs}$ (as annuity paid every 6 months)
(ii) PV of profit $=$

$$
84,000\left(\mathrm{a}_{-12.50676}^{(2)}+\mathrm{v}^{12.5 @ 675} \mathrm{a}_{-12.50456}^{(2)}\right)-720,000 .
$$

$$
\mathrm{a}_{-12.5 \varrho 635}^{(2)}=\frac{1-(0.9484)^{12.5}}{0.059126}=8.7487 \ldots
$$

(Students can also arrive this by interpolation of factors available in actuarial formula tables- Its value is 8.7456)

$$
\mathrm{a}_{-12.504 \% \mathrm{~b}}^{(2)}=\frac{1-(0.96154)^{12.5}}{0.039608}=9.7839 .
$$

Hence PV of profit $=84,000(8.7487+0.48272 \times 9.7839)-720,000$
$=411,613.07$
Profit after 25yrs

$$
\begin{aligned}
& =411,613.07(1.06)^{12.5}(1.04)^{12.5} \\
& =1,392,288.43
\end{aligned}
$$

Solution 8:

i) The amount of loan is

$$
\begin{aligned}
& 25,000 \mathrm{v}+24,000 \mathrm{v}^{2}+\cdots \ldots+6,000 \mathrm{v}^{20} @ 6 \% \\
& =26,000 \mathrm{a}_{20}-1,000(\mathrm{Ia})_{20} @ 6 \% \\
& =26,000 \times 11.4699-1,000 \times 98.7004 \\
& =\text { ₹ } 199,517.00
\end{aligned}
$$

ii) The 10th instalment is $₹ 16,000$

Loan amount outstanding after 9th instalment is

$$
\begin{aligned}
& 16,000 \mathrm{v}+15,000 \mathrm{v}^{2}+\cdots \ldots+6,000 \mathrm{v}^{11} @ 6 \% \quad \ldots \\
& =17,000 \mathrm{a}_{11}-1,000(\mathrm{Ia})_{11} \bigcirc 6 \% \\
& =17,000 \times 7.8869-1,000 \times 42.7571 \\
& =\text { ₹ } 91,320.20 \ldots
\end{aligned}
$$

The interest component in the 10th instalment is:0.06X91, $320.20=₹ 5,479.20$
The Capital portion $=₹ 16,000-₹ 5,479.20=₹ 10,520.80$
iii) a) The capital outstanding after the payment of the 10th instalment is:

Capital o/s after the 10th instalment $=91,320.20-105,20.80=₹ 80,799.40$ This will be repaid by an instalment of ₹ $16000 /-$ per annum. ...

Let the remaining term be ' n ' years.

```
80,799.40 < 16,000a an_@676
    => a m n
```

From tables, we can find that n will be 7 years. Therefore, the loan completes by end of 17 years.
b) Let ' R ' be the reduced final payment i.e., final instalment.

Then, $16,000 a_{6\urcorner}+R v^{7}=80,799.40 @ 6 \%$.

$$
R=\frac{80,799.40-16,000 \times 4.9173}{0.66506}
$$

$$
\mathrm{R}=₹ 3,191.60
$$

c) Total interest paid during the term

$$
\begin{gathered}
=25,000+24,000+\ldots . .+16,000+6 \mathrm{X} 16,000+3191.60-199,517.60 \\
=205,000+96,000+3,191.60-199,517.60 \\
=₹ 104,674
\end{gathered}
$$

Solution 9: i) Eurobonds:

\checkmark A form of medium or long-term borrowing
\checkmark Usually unsecured
\checkmark Pay regular interest payments and a final capital repayment
\checkmark Issued by large companies, governments and supra-national organisations
\checkmark Issued and traded internationally
\checkmark Often not denominated in native currency of the issuer
\checkmark Yields depend on the risk of the issuer and issue size
\checkmark Absence of full-blown government control
\checkmark Usually have novel features

ii. Preference Shares:

\checkmark A form of equity-type finance
\checkmark Offer fixed stream of investment income, if issuer makes sufficient profits
\checkmark Dividends are limited when compared with those on ordinary shares
\checkmark Preference shareholders rank above ordinary shareholders both for dividends and, usually, on winding up
\checkmark Voting rights only if dividends are unpaid or on matters having direct affects their rights
\checkmark Usually offered on cumulative basis, which means unpaid dividends are carried forward
\checkmark Less riskier than ordinary shares
\checkmark Expected return is likely to be lower than on ordinary shares
\checkmark Marketability is similar to that of loan capital
iii. Time Benchmark Interest rate Present in years bond yield to value Eurobond value factor

1	0.03	0.0458	0.95620
2	0.06	0.0766	0.86276
3	0.09	0.1074	0.73635
4	0.12	0.1382	0.59583
5	0.15	0.169	0.45806

From the above, the present value of the Eurobond is:

$$
\begin{aligned}
& 11(0.9562+0.86276+0.73635+0.59583+0.45806)+100(0.45806) \\
& =\text { ₹ } 85.5072
\end{aligned}
$$

Solution 10:

The investor will receive first coupon on 30th September 2014. The net coupon per ₹ 100 nominal will be:

$$
\begin{aligned}
& 0.9 \times 1.5 \times(\text { Index - March } 2014 \text { / Index - September 2012) } \\
& =0.9 \times 1.5 \times 110 / 105
\end{aligned}
$$

In real present value terms, this is $0.9 \times 1.5 \times(110 / 105) \times v \times(1+\mathrm{g})^{-0.5}$
Where $\mathrm{g}=4 \%$ per annum and v is calculated at 2.5% (per half year)
The second coupon on 31 st March 2015 will be: $\quad=0.9 \times 1.5 \times 110 / 105 \times(1+\mathrm{g})^{-0.5}$
In real present value terms, this is $0.9 \times 1.5 \times 110 / 105 \times(1+g)^{-0.5} \mathrm{x} \mathrm{v}^{2} \times(1+\mathrm{g})^{-1}$
Continuing this way, the last coupon payment on 31st March 2023 will be:
$=0.9 \times 1.5 \times 110 / 105 \times(1+\mathrm{g})^{8.5}$
In real present value terms, this is $0.9 \times 1.5 \times(110 / 105) \times(1+\mathrm{g})^{8.5} \mathrm{x} \mathrm{v}^{18} \mathrm{x}(1+\mathrm{g})^{-9}$
Similarly, the real present value of redemption payment is

$$
\left.100 \times(110 / 105) \times(1+\mathrm{g})^{8.5} \mathrm{x} \mathrm{v}^{18} \mathrm{x}^{(1+g}\right)^{-9}
$$

The present value of all the coupon payments and redemption payment is:

$$
\begin{aligned}
P & =(1+g)^{-0.5} \times(110 / 105) \times\left(0.9\left(v+v^{2}+\ldots \ldots+v^{18}\right)+100 v^{18}\right) \\
P & =0.98058 \times 1.04762\left(0.9 \mathrm{a}_{18^{-}} 2.5 \%+100 \mathrm{v}^{18} 2.5 \%\right) \\
P & =1.02727(0.9 \times 14.3533+100 \times 0.64116) \\
& =₹ 79.1346
\end{aligned}
$$

[8 Marks]

Solution 11:

(i) The one-year spot rate of interest, say i_{1} is 8% per annum

To calculate two-year spot rate of interest, we need to arrive at the price of the two year bond, P

$$
P=9 a_{2-\mid}+100 v^{2} \text { at } 7 \%
$$

From tables,

$$
\begin{aligned}
& a_{2^{-}}=1.808, \quad v^{2}=0.87344 \\
& \Rightarrow P=9 \times 1.808+100 \times 0.87344=103.616
\end{aligned}
$$

Then the two-year spot rate of interest, i_{2} is such that:

$$
\begin{aligned}
103.616 & =9 /(1.08)+109 /\left(1+\mathrm{i}_{2}\right)^{2} \\
\Rightarrow \quad & \left(1+\mathrm{i}_{2}\right)^{2}=1.14396 \quad \Rightarrow \mathrm{i}_{2}=6.9562 \%
\end{aligned}
$$

To calculate three-year spot rate of interest, we need to arrive at the price of the three year bond, Q

$$
\mathrm{Q}=9 \mathrm{a}_{3^{-}}+100 \mathrm{v}^{3} \text { at } 7 \%
$$

From tables,

$$
\begin{aligned}
& a_{3^{-}-}=2.6243, \quad v^{3}=0.8163 \\
& \Rightarrow Q=9 \times 2.6243+100 \times 0.8163=105.2487
\end{aligned}
$$

Then the three-year spot rate of interest, i_{3} is such that:

$$
\begin{aligned}
& 105.2487=9 /(1.08)+9 /(1.069562)^{2}+109 /\left(1+i_{3}\right)^{3} \\
& 105.2487=8.33334+7.86738+109 /\left(1+i_{3}\right)^{3} \\
& \Rightarrow \quad\left(1+i_{3}\right)^{3}=1.22406 \quad \Rightarrow i_{3}=6.9714 \%
\end{aligned}
$$

(ii) The one year forward rate of interest beginning from now is 8%

The forward rate for one year beginning in one year from now is $f_{1,1}$ such that:

$$
\begin{aligned}
& 1.08\left(1+\mathrm{f}_{\mathrm{i}, 1}\right)=(1.069562)^{2} \\
\Rightarrow \quad & \mathrm{f}_{1,1}=5.9224 \%
\end{aligned}
$$

The forward rate for one year beginning in two year from now is $f_{2,1}$ such that:

$$
\begin{aligned}
& (1.069562)^{2}\left(1+\mathrm{f}_{2,1}\right)=(1.069714)^{3} \\
\Rightarrow \quad & \mathrm{f}_{2,1}=7.0018 \%
\end{aligned}
$$

The forward rate for two year beginning in one year from now is $f_{1,2}$ such that:

$$
\begin{aligned}
& 1.08\left(1+\mathrm{f}_{1,2}\right)^{2}=(1.069714)^{3} \\
\Rightarrow \quad & \mathrm{f}_{1,2}=6.4608 \%
\end{aligned}
$$

