Actuarial Society of India

Examinations

November 2005

CT7 – Economics

Indicative Solutions

1

A;

2	A;
3	C;
4	A;
5	A;
6	A;
7	A;
8	A;
9	A;
10	D;
11	B;
12	B;
13	B;
14	C;
15	D;
16	D;
17	D;
18	A;
19	C;
20	C;
21	A;
22	D;
23	B;
24	B ;
25	В;
26	В.

Q.27)

i) expected value of pay-off from the gamble= 900.(1/4)+1000.(3/4) =300. Now $\frac{1}{2}$

 $U = W^{\frac{1}{2}}$ implies U' > 0 and $U'' < 0 \Rightarrow$ individual is a risk averter. This implies the individual will choose the other certain alternative of Rs.300.

ii) Expected utility of the gamble= $900^{\frac{1}{2}} (1/4) + 100^{\frac{1}{2}} (3/4) = 15$. Let C be the $\frac{1}{2}$

certainty equivalent of the gamble. Therefore U(C) = 15 or $C^{\overline{2}} = 15$ or C=225.

- a) Hence if the other alternative is changed to 225, then the individual will be indifferent between the gamble and the certain offer.
- b) If the certain offer is changed to greater than 225 but less than 300, it is still greater than the certainty equivalent. So the individual will choose the certain offer
- c) If he certain offer is changed to 224, then obviously the individual will choose the gamble.

CT7

Q.28)

- a) Monetarist, since in this case monetary policy is effective, but fiscal policy is not
- b) Keynesian, since in this case fiscal policy is effective, but is monetary policy not
- c) Keynesian, since in this case fiscal policy is effective, but is monetary policy not
- d) Monetarist, since in this case LM is vertical

Q.29)

The marginal cost curve of a representative firm is given by mc = .8 + 4q

The supply curve of the firm obtained from the following relation

 $p = .8 + 4q^s \Rightarrow q^s = (p - .8)/4.$

The industry supply curve given by $Q^s = (100p - 80)/4 \Rightarrow Q^s = 25p - 20$. In S.R industry equl: $25p - 20 = 100 - 5p \Rightarrow p = 4$. and Q = 80.

Q.30)

(i)&(ii)

: marginal value product of lab
) (MVP_L)
Rs.44
Rs.24
Rs.20
Rs.14
Rs.10
Rs. 6

(iii) profit is maximized at the level of L at which W=Rs $14=MVP_L$. Hence profit is maximized at L= 4 and q = 51.

(iv) $W = Rs.45 > MVP_L (\max) Rs.44 \Rightarrow L = 0, q = 0.$

Q.31)

- i) Equ:: level obtained from $Y = 300 + .8Y \Rightarrow equl \ Y = 1500$.
- ii) aggregate planned demand at Y = 1200 is $1260 > 1200 \Rightarrow$ unplanned inventory change is -60.
- iii) As autonomous part of aggregate planned investment changes by 50units

 $\Rightarrow Y \text{ changes by } 50 \times \frac{1}{1-.8} = 250 \text{ units.} \Rightarrow I \text{ changes by } 50+250 \times 0.1 = 75 \text{ units.}$

CT7

Q.32)

C = 110, involuntary change in inventory of consumer goods =90-110 = -20 \Rightarrow gross actual investment

I= 5+10-20 =-5. net actual inv. I (net)=-5-20 = -25, GDP= C+gross I = 110-5=105. NDP=105-20= $85. \rightarrow C(110)+Inet(-25)$

Q.33)

i) aggr. Pl. dem,
$$Y^d$$
 at $Y = 0$, is $a + 200$. Hence, $\frac{a}{a + 200} = \frac{1}{2} \Rightarrow a = 200$.

ii)
$$Y^{d}at Y = 1000$$
, is $1000 + 200 = 1200$

iii) Hence, at Y = 1000, aggr. Pl. dem $a + bY + 200 = 400 + b \times 1000 = 1200 \Rightarrow b = .8$.

Autonomous expenditure multiplier = $\frac{1}{1-.8} = \frac{1}{.2} = 5$

Q.34)

i)

The kink will be at the point, where Q = Q' $60 - P = \frac{80}{3} - \frac{P}{3}$ 180 - 3P = 80 - PP = Rs. 50 Q (in thousands) = 60 - 50 = 10 or Q = 10,000 units

ii) Over the range from 0 to 10,000 units of output: $P_1 = 60 - Q_1$

$$TR_{1} = 60Q_{1} - Q_{1}^{2}$$
$$MR_{1} = \frac{dTR_{1}}{dQ_{1}} = 60 - 2Q_{1}$$

When output exceeds 10

When output exceeds 10,000 units

$$P_{2} = 80 - 3Q_{2}$$

$$TR_{2} = 80Q_{2} - 3Q_{2}^{2}$$

$$MR_{1} = \frac{dTR_{2}}{dQ_{2}} = 80 - 6Q_{2}$$

$$TC = 100 + 20Q + 0.5Q^{2}$$

$$MC = \frac{dTC}{dQ} = 20 + Q$$
When Q₁ = Q₂ = Q = 10,000 units
MR₁ = 60 - 2x10 = 40
MR₂ = 80 - 6x10 = 20
MC = 20 + 10 = 30

At Q = 10,000 units, MC (30) lies between MR₁ (40) and MR₂ (20). That is, MC curve MR curve in its discontinuous vertical portion. Thus profit maximizing level of output is Q = 10,000 units. P = 60 - 10 = Rs. 50 per unit $TC]_{Q=10}$ (in thousands) = $100 + 20x10 + 0.5x10^2 = 350$ Profit (in thousands) = ? = 50x10 - 350 = 150

iii) The optimal price would increase if marginal cost at Q = 10,000 units becomes more than RS. 40 (MR₁). That is, marginal cost must rise by more than Rs. 10 before optimal price optimal price would increase. The optimal price would decrease if marginal cost at Q = 10,000 units becomes less than Rs. 20. That is, marginal cost must fall by more than Rs. 10 before optimal price would decrease.

Q.35)

Equation of the Phillips Curve

 $\Pi = \Pi^e + \boldsymbol{l} \left(\boldsymbol{U}_N - \boldsymbol{U} \right)$

In the short run Π^e is given. Therefore in the short run Π falls with a rise in U. Hence Phillips curve is downward sloping in the short run.

This means in the short run there is a trade-off between inflation and unemployment.

In the long run $\Pi = \Pi^{e}$. Hence in the long run equation of the Phillips curve reduces to $U = U_{N}$

Hence long run Phillips curve is vertical.

This means that there is no trade-off between inflation and unemployment in the long run.

Answer to the last part to be given in the framework of the AD-AS model

Q.36)

- (A) False, since the tax is on goods and not on individuals
- (**B**) False, since the tax is on individuals and not on goods
- (C) False, since expenditure on sports cars rises more than proportionately with income
- (D) False, since expenditure on kerosene rises less than proportionately with income
