ACTUARIAL SOCIETY OF INDIA

November 2005 Examinations
SUBJECT CT-6 : STATISTICAL MODELS

Solution 1.

Short-tailed business refers to lines of general insurance business in which the claims are settled quickly. Long-tailed business refers to lines of general insurance business in which claims generally take a long time to be settled.

Example:
Short-tailed business: Property damage
Long-tailed: Liability business.

Solution 2.

It is easy to see that $\ln X_{t}=a+b t+z_{t}$. Therefore,

$$
\left.\begin{array}{rl}
\ln X_{t} \quad \ln X_{t-1} & =\left(a+b t+Z_{t}\right) \quad\left[\begin{array}{ll}
a+b(t & 1
\end{array}\right)+Z_{t-1}
\end{array}\right]
$$

Since $Z_{t} \quad Z_{t-1}$ is $I(0)$, the time series Y_{1}, Y_{2}, \ldots, defined by

$$
Y_{t}=\ln X_{t} \quad \ln X_{t-1}
$$

is stationary.
[Total 2]

Solution 3.

(i) The surplus at time t is

$$
U(t)=u+(1+\theta) \lambda \mu t-\sum_{i=1}^{N(t)} X_{i}
$$

(ii) The probability of ruin is:

$$
\psi(u)=P(U(t)<0) \quad \text { for } \quad \text { some } \quad t, 0<t<\infty
$$

$$
\text { When } \theta=0 \quad \psi(u)=1, \quad u>0
$$

(iii) The colleague's statement is not correct. As the value of λ increases the rate of claims arrival will increase. This will be accompanied by a correspondingly increased rate of accumulation of premium - effectively altering the time-scale of the overall cash flow. However this will not alter the size of each claim. So the time at which ruin occurs may be altered but not the probability of ultimate ruin.
(iv) The surplus process ignores:

- investment income on the cash flows.
- insurer's expenses.
- delays in claim settlement
- any reinsurance arrangement
[Total 6]

Solution 4.

(i) Here, $F(x)=1 \quad \exp \left(-10 x^{3}\right)$. Therefore, $F^{-1}(u)=\left[\begin{array}{lll}1 / 10 & \ln (1 & u)\end{array}\right]^{1 / 3}$

The transformed variates $F^{-1}\left(U_{1}\right), F^{-1}\left(U_{2}\right), F^{-1}\left(U_{3}\right), \ldots$ have the requisite distribution.
(ii) Use acceptance-rejection method. Let $V_{1}=\partial U_{1}$, so that V_{1} is uniformly distributed on $[0, \partial]$ and has density function $g(x)=1 / \partial$ over that range. This is the 'dominating density'.

Define

$$
C=\sup _{0<x<\pi} \frac{f(x)}{g(x)}=\sup _{0<x<\pi} 2 \sin ^{2} x=2
$$

If $U_{2}<\sin ^{2} V_{1}$ let $X_{1}=V_{1}$; otherwise reject this value and select a new pair U_{1}, $U 2$ and try again.
Repeat for other X_{i}.
(iii) Divide [0, 1] into equal length intervals [0, $1 / n],(1 / n, 2 / n], \ldots,(11 / n, 1]$. Pick X_{i} if $(i \quad 1) / n<U_{i} \quad i / n$.

Solution 5.

(i) The general form can be written as
$C_{i j}=r_{j} s_{i} x_{i+j}+e_{i j}$
where C_{ij} is incremental claims and
$r_{j} \quad$ is the development factor for year j, independent of origin year i
$s_{i} \quad$ is a parameter varying by origin year, representing exposure
x_{i+j} is a parameter varying by calendar year, representing inflation
$e_{i j} \quad$ is an error term
(ii) Using the incurred claims, we can calculate the cumulative incurred claims:

Cumulative incurred claims

Accident Year	Delay Year		
$\mathbf{2 0 0 2}$	4,253	5,208	5,443
$\mathbf{2 0 0 3}$	3,142	5,087	
$\mathbf{2 0 0 4}$	4,002		

The development factors are:
$5,443 / 5,208=1.04512$
and $(5,087+5,208) /(3,142+4,253)=1.39216$
$1-1 / f=1-1 /(1.04512 * 1.39216)=0.3127$
2004 Emerging Liability is $=4,500 * 0.90 * 0.3127=1,266$
Reported Liability $=4,002$
Ultimate Liability $=5,268$
Reserve $=\mathbf{5 , 2 6 8} \mathbf{- 1 , 8 8 5}=\mathbf{3 , 3 8 3}$

Solution 6.

(i) Smallest loss amount:

Discount	If claim	If no claim	Difference
0%	$900,675,495$	$675,495,360$	$\mathbf{5 4 0}$

So the smallest loss for which claim will be made at the 0% level is 540 .
(ii)

$$
\begin{aligned}
P(\text { Claim }) & =P(\text { Claim } \mid \text { Accident }) P(\text { Accident }) \\
& =P(X>x) * 0.2
\end{aligned}
$$

where X is the loss, which has a lognormal distribution, and x is the minimum loss for which a claim will be made.

$$
\begin{aligned}
& E(X)=\exp \left(\mu+1 / 2 \sigma^{2}\right)=1,188 \\
& V(X)=\exp \left\{2\left(\mu+1 / 2 \sigma^{2}\right)\right\} \cdot\left[\exp \left(\sigma^{2}\right)-1\right]=(495)^{2}
\end{aligned}
$$

$\therefore \exp \left(\sigma^{2}\right)-1=\frac{495^{2}}{1188^{2}}$
$\sigma^{2}=0.16$
Hence, $\sigma=0.4, \mu=7$
$P(X>x)=1-\Phi\left(\frac{\ln (x)-\mu}{\sigma}\right)=1-\Phi\left(\frac{\ln (x)-7}{0.4}\right)$
$P(X>540)=1-\Phi(-1.771)=\Phi(1.771)=0.9617$
$P($ Claim $)=0.91671 \times 0.2=0.1923$
The transition matrix can now by completed:
$\left(\begin{array}{cccc}0.192 & 0.808 & 0 & 0 \\ 0.147 & 0 & 0.853 & 0 \\ 0.120 & 0 & 0 & 0.880 \\ 0 & 0.197 & 0 & 0.803\end{array}\right)$
(iii) The steady state distribution is now the solution of:

$$
\begin{aligned}
& 0.192 \pi_{0}+0.147 \pi_{1}+0.120 \pi_{2}=\pi_{0} \\
& 0.808 \pi_{0}+0.197 \pi_{3}=\pi_{1} \\
& 0.853 \pi_{1}=\pi_{2} \\
& 0.880 \pi_{2}+0.803 \pi_{3}=\pi_{3} \\
& \pi_{0}+\pi_{1}+\pi_{2}+\pi_{3}=1
\end{aligned}
$$

Expressing $\pi_{0}, \pi_{1}, \pi_{3}$ in terms of π_{2} :

$$
\begin{aligned}
& \pi_{3}=\frac{0.880}{0.197} \pi_{2}=4.4670 \pi_{2} \\
& \pi_{1}=\frac{1}{0.853} \pi_{2}=1.1723 \pi_{2} \\
& \pi_{0}=\frac{0.147 / 0.853+0.120}{0.808} \pi_{2}=0.3618 \pi_{2} \\
& \therefore 0.3618 \pi_{2}+1.1723 \pi_{2}+\pi_{2}+4.4670 \pi_{2}=1
\end{aligned}
$$

$$
\pi_{2}=0.1428
$$

The proportions at each level of discount in the steady state are therefore:
0\%: 5.2%
25\%: 16.7\%
45\%: 14.3\%
60\%: 63.8\%
Total: 100.0\%

Solution 7.

Posterior density of \grave{e} is
$\frac{\frac{1}{\theta} I(X<\theta) \theta e^{-\theta}}{\int \frac{1}{\theta} I(X<\theta) \theta e^{-\theta} d \theta}=\frac{I(X<\theta) e^{-\theta}}{\int_{X}^{\infty} e^{-\theta} d \theta}= \begin{cases}e^{-(\theta-X)} & \text { if } \theta>X \\ 0 & \text { otherwise }\end{cases}$
(i) Posterior mean of è is
$E(\grave{e} \mid X)=X+E(\grave{e} \quad X \mid X)=X+1$.
Bayes estimator of \grave{e} with respect to the squared error loss function is $X+1$
(ii) Bayes estimate of \grave{e} with respect to the absolute error loss function is the median of the posterior distribution. This is given by the solution to the equation
$\frac{1}{2}=\int_{X}^{x} e^{-(\theta-X)} d \theta=1-e^{-(\theta-X)}$
The solution is $X+\ln 2$.
(iii) Likelihood of \grave{e} is

$$
\prod_{i=1}^{2} \frac{1}{\theta} I\left(\theta>X_{i}\right)=\frac{1}{\theta} I\left(\theta>\operatorname{Max}\left\{X_{1}, X_{2}\right\}\right)
$$

The posterior density is

$$
\frac{\frac{1}{\theta^{2}} I\left(\theta>\operatorname{Max}\left\{X_{1}, X_{2}\right\}\right) \theta e^{-\theta}}{\int_{\max \left(X_{1}, X 2\right)}^{\infty} \frac{1}{\theta} e^{-\theta} d \theta}
$$

Bayes estimator or the posterior mean is given by

$$
\begin{aligned}
\frac{\int_{\max \left(X_{1}, X_{2}\right)}^{\infty} e^{-\theta} d \theta}{\int_{\max \left(X_{1}, X_{2}\right)}^{\infty} \frac{1}{\theta} e^{-\theta} d \theta}= & \frac{\exp \left(-\operatorname{Max}\left(X_{1}, X_{2}\right)\right.}{\int_{\max \left(X_{1}, X_{2}\right)}^{\infty} \frac{1}{\theta} e^{-\theta} d \theta} \\
& =\left[\int_{\max \left(X_{1}, X_{2}\right)}^{\infty} \frac{1}{\theta} \exp \left\{-\left(\theta-\max \left(X_{1}, X_{2}\right)\right)\right\} d \theta\right]^{-1}
\end{aligned}
$$

which further simplifies to

$$
=\left[\int_{0}^{\infty} \frac{e^{-y}}{\left(y+\operatorname{Max}\left(X_{1}, X_{2}\right)\right.} d y\right]^{-1}
$$

Solution 8.

(i) Mean of the gamma density is áâ, which must be a function of the canonical parameter \grave{e}. The gamma density can be rewritten as

$$
\begin{aligned}
f(y) & =y^{\alpha-1} \beta^{-\alpha} \exp (-y / \beta) / \Gamma(\alpha) \\
& =\exp [(\alpha-1) \log y-\alpha \log \beta-y / \beta-\log \Gamma(\alpha)]
\end{aligned}
$$

The term $\log y$ must be absorbed in $c(y, \ddot{\partial})$, therefore we can choose $\phi=\hat{a}$.
Turning to y / \hat{a}, we can rewrite it as $y a ́ /(a ́ a \hat{a})$. Now it is clear that \grave{e} and $a(\ddot{o})$ should be $1 /(a \hat{a})$ and $1 / a ́$, respectively (or with interchanged signs). By rearranging the terms we have the requisite form of exponential family density with
$\grave{e}=1 /(a ́ a ̂)$,
$\phi=a$,
$b(\grave{e})=\log (\grave{e})$,
$a(\phi)=1 / \phi$,
$c(y, \phi)=a ́ \log a ́+\left(\begin{array}{ll}a & 1\end{array}\right) \log y$.
(ii) $E(Y)=b^{\prime}(\grave{e})=1 / e ̀=a ́ a ̂$.

$$
\operatorname{Var}(Y)=a(\phi) b^{\prime \prime}(\grave{e})=(\quad 1 / \hat{a})\left(\quad(\hat{a} \hat{a})^{2}\right)=\hat{a}^{2} \hat{a}^{2} .
$$

(iii) The canonical link function is the reciprocal function (inverse of the b function). Therefore, the model for the claim size Y is

$$
\frac{1}{E(Y)}=\beta_{0}+\sum_{i=1}^{4} \beta_{i} x_{i}
$$

This GLM can be fitted into any statistical package.

In terms of the parame ters of this model, the hypothesis of "no gender effect on claim size" translates into $\hat{a}_{2}=0$. The t-statistic associated with \hat{a}_{2} is the appropriate test statistic. The appropriate degrees of freedom is $n \quad 5$, where n is the number of observations.
[Total 9]

Solution 9

$$
\begin{equation*}
f(x)=F^{\prime}(x)=\frac{\alpha 100^{\alpha}}{(100+x)^{\alpha+1}} \tag{i}
\end{equation*}
$$

The likelihood function is:

$$
\begin{aligned}
L(\alpha) & =\prod_{i=1}^{h} \frac{\alpha 100^{\alpha}}{\left(100+x_{i}\right)^{\alpha+1}} \times\left(\frac{100}{100+M}\right)^{\alpha(n-h)} \\
& =\frac{\alpha^{h} 100^{\alpha n}}{(100+M)^{\alpha(n-h)}} \prod_{i=1}^{h}\left(100+x_{i}\right)^{-\alpha-1}
\end{aligned}
$$

$l(\alpha)=\log L(\alpha)=h \log \alpha+\alpha n \log 100-\alpha(n-h) \log (100+M)-(\alpha+1) \sum_{i=1}^{h} \log \left(100+x_{i}\right)$
$\frac{\partial l}{\partial \alpha}=\frac{h}{\alpha}+n \log (100)-(n-h) \log (100+M)-\sum_{i=1}^{h} \log \left(100+x_{i}\right)$
$\frac{\partial^{2} l}{\partial \alpha^{2}}=-\frac{h}{\alpha^{2}}<0$ and is hence a maximum.

Equating $\frac{\partial l}{\partial \alpha}=0$ we obtain

$$
\hat{\alpha}=\frac{h}{(n-h) \log (100+M)-n \log (100)+y}
$$

(ii)

We require $E(Y)=\int_{0}^{M} x f(x) d x+M P(X>M)$

$$
\begin{align*}
& =E(X)-\int_{M}^{\infty}(x-M) f(x) d x \tag{1}\\
& E(X)=\frac{\lambda}{\alpha-1}=\frac{100}{0.5}=200 \\
& \int_{M}^{\infty}(x-M) f(x) d x=\int_{0}^{\infty} z f(z+M) d z \\
& =\frac{100^{\alpha}}{600^{\alpha}} \int_{0}^{\infty} \frac{z \alpha 600^{\alpha}}{(600+x)^{\alpha+1}} d z \\
& =\left(\frac{1}{6}\right)^{\alpha} \frac{\lambda^{\prime}}{\alpha-1}=\frac{600}{7.3485}=81.65
\end{align*}
$$

Thus $\quad E(Y)=200-81.65=118.35$

Solution 10.

(i) Since $|\hat{a}|<1$, the process is $\operatorname{ARMA}(1,1)$.

Therefore, $p=q=1$ and $d=0$.
(ii) The time series is itself stationary, so no differencing is necessary. We have $\left.\left(\begin{array}{ll}1 & a \\ B\end{array}\right) Y=\left[\begin{array}{ll}1+(1 & a\end{array}\right) B\right] Z$, i.e.,

$$
\begin{aligned}
Y & =\frac{1+(1-\alpha) B}{1-\alpha B} Z \\
& =[1+(1-\alpha) B] \cdot\left[1+\alpha B+\alpha^{2} B^{2}+\alpha^{3} B^{3} \ldots\right] \mathrm{Z} \\
& =\left[1+B+\alpha B^{2}+\alpha^{2} B^{3}+\alpha^{3} B^{4}+\ldots\right] \mathrm{Z}
\end{aligned}
$$

It follows that

$$
\begin{align*}
\operatorname{Var}(Y i) & =\tilde{a}_{0}= \\
= & \left(1+1+\hat{a}^{2}+\hat{a}^{4}+\hat{a}^{6} . \cdots\right) \hat{o}^{2} \\
& =\left[1+1 /\left(1 \quad a^{2}\right)\right] \hat{o}^{2} ; \\
\operatorname{Cov}(Y i, Y i+k) & =\tilde{a}_{k}=\left(\hat{a}^{k-1}+\dot{a}^{k}+\hat{a}^{k+2}+\cdots\right) \hat{o}^{2} \tag{2}\\
& =\left[a^{k-1}+a^{k} /\left(1 \quad \hat{a}^{2}\right)\right] \hat{o}^{2}
\end{align*}
$$

Therefore,

$$
\tilde{n} k=\tilde{a}_{k} / \tilde{a}_{0}=\frac{\alpha^{k-1}\left(1-\alpha^{2}\right)+\alpha^{k}}{\left(1-\alpha^{2}\right)+1} \cdot=\frac{\alpha^{k-1}+\alpha^{k}-\alpha^{k+1}}{2-\alpha^{2}}
$$

(iii) It follows from part (ii) that $\tilde{n}_{1}=\left(\begin{array}{ccc}1+a & \hat{a}^{2}\end{array}\right) /\left(2 \quad \hat{a}^{2}\right)$. Set this equal to the empirical version, r_{1}. This equation simplifies to the quadratic equation

$$
\left(\begin{array}{ll}
1 & r_{1}
\end{array}\right) \dot{a}^{2} \quad \dot{a}+\left(2 r_{1} \quad 1\right)=0 .
$$

The estimator of a is a root of this quadratic equation.
Since $\left|r_{1}\right|<1$, the coefficient of \hat{a}^{2} is positive. There is a solution to the quadratic equation if the discriminant, $1 \quad 4\left(1 \quad r_{1}\right)\left(2 r_{1} 1\right)$, is positive. It is easy to see that the discriminant takes the minimum value of $1 / 2$ when $r_{1}=3 / 4$, hence it is always positive.

The root $\frac{1+\left[1-4\left(1-r_{1}\right)\left(2 r_{1}-1\right)\right]^{1 / 2}}{2\left(1-r_{1}\right)}$ is always greater than 1 , while the other root
$\frac{1-\left[1-4\left(1-r_{1}\right)\left(2 r_{1}-1\right)\right]^{1 / 2}}{2\left(1-r_{1}\right)}$ is always between -1 and +1 . Hence, the latter root should be chosen.
[Total 10]

Solution 11.

(a) $\quad f(x)=0.75 f_{A}(x)+0.25 f_{B}(x)$

$$
\begin{aligned}
P(X>2000) & =0.75 \int_{2000}^{\infty} f_{A}(x) d x+0.25 \int_{2000}^{\infty} f_{B}(x) d x \\
& =0.75\left(\frac{200}{200+2000}\right)^{3.5}+0.25\left(\frac{1200}{1200+2000}\right)^{4}=0.00511
\end{aligned}
$$

(b) $E(X)=0.75 \times \frac{200}{2.5}+0.25 \times \frac{1200}{3}=160$
(ii) $\frac{\lambda}{\alpha-1}=160 \quad$ and $\quad \frac{\alpha \lambda^{2}}{(\alpha-1)^{2}(\alpha-2)}=110,400$

$$
\begin{aligned}
& \therefore \frac{\alpha}{\alpha-2}=\frac{110,400}{160^{2}}=4.3125 \\
& \alpha=2.6038 \text { and } \quad \lambda=256.6038 \\
& P(Y>2000)=\left(\frac{256.6038}{2000+256.6038}\right)^{2.6038}=0.00348
\end{aligned}
$$

(iii) Not separating out small and large claims results in an underestimation of tail probabilities for the claim distribution. This could be dangerous for estimating premium rates, reinsurance rates and security.
[Total 11]

Solution 12.

(i) Expected loss without reinsurance $=\ddot{e} /\binom{a}{1}=$ Rs. $1,500,000$

Expected amount ceded to reinsurer is

$$
\begin{aligned}
& \int_{2,000.000}^{\infty} x \frac{3.125 \lambda^{3.125}}{(\lambda+x)^{4.125}} d x-2,000,000\left(\frac{\lambda}{\lambda+2,000,000}\right)^{\alpha} \\
& =\left[-x\left(\frac{\lambda}{\lambda+x}\right)^{3.125}\right]_{2,000,000}^{\infty}+\int_{2,000.000}^{\infty} \frac{\lambda^{3.125}}{(\lambda+x)^{3.125}} d x-2,000,000\left(\frac{\lambda}{\lambda+2,000,000}\right)^{\alpha} \\
& =2,000,000\left(\frac{\lambda}{\lambda+2,000,000}\right)^{\alpha}+\left[-\frac{\lambda^{3.125}}{2.125(\lambda+x)^{2.125}}\right]_{2,000,000}^{\infty}-2,000,000\left(\frac{\lambda}{\lambda+2,000,000}\right)^{\alpha}
\end{aligned}
$$

$$
\begin{aligned}
& =\left[-\frac{\lambda^{3.125}}{2.125(\lambda+x)^{2.125}}\right]_{2,000,000}^{\infty} \\
& =\frac{3,187,500^{3.125}}{\left.2.125(5,187,500)^{2.125}\right)}=532,889
\end{aligned}
$$

Therefore the amount ceded to reinsurer is Rs532,889. Expected amount payable with reinsurance $=$ Rs $1,500,000-$ Rs $532,889=$ Rs967,111
(ii) Annual expected profits under different scenarios
$D_{0} \quad$ Reinsurance premium Rs0
Net total claims: $\quad \grave{e}_{0}=$ Rs0
$\grave{e}_{1}=\operatorname{Rs} 1,500,000$
$\grave{e}_{2}=$ Rs $1,500,000 \times 2=$ Rs $3,000,000$
$\grave{e}_{3}=\operatorname{Rs} 1,500,000 \times 3=\operatorname{Rs} 4,500,000$
$D_{1} \quad$ Reinsurance premium Rs500,000
Net total claims: $\quad \grave{e}_{0}=$ Rs0
$\grave{e}_{1}=$ Rs 967,111
$\grave{e}_{2}=\mathrm{Rs} 967,111+\mathrm{Rs} 1,500,000=\mathrm{Rs} 2,467,111$
$\grave{e}_{3}=$ Rs $967,111+$ Rs $1,500,000 \times 2=$ Rs $3,967,111$
D_{2} Reinsurance premium Rs $1,000,000$
Net total claims: $\quad \grave{e}_{0}=$ Rs0

$$
\grave{e}_{1}=\operatorname{Rs} 967,111
$$

$$
\grave{e}_{2}=\operatorname{Rs} 967,111 \times 2=\operatorname{Rs} 1,934,222
$$

$$
\grave{e}_{3}=\operatorname{Rs} 967,111 \times 2+\operatorname{Rs} 1,500,000=\mathrm{Rs} 3,434,222
$$

The decision matrix is (figures in units of Rs1,000)

	No disaster \grave{e}_{0}	1 disaster \grave{e}_{1}	2 disaster \grave{e}_{2}	3 or more disasters \grave{e}_{3}
D_{0}	0	1,500	3,000	4,500
D_{l}	500	1,467	2,967	4,467
D_{2}	1,000	1,967	2,934	4,434

(iii) (a) Maximum losses:
D_{0} : Rs. 4,500
D_{1} : Rs. 4,467
D_{2} : Rs. 4,434 - minimum.
The minimax decision is D2.
(b) The insurer would expect to minimise the maximum loss by taking out the policy offering the most reinsurance, i.e. D_{2}.
[1]
(iv) $\mathrm{P}(0$ claim $)=\exp (0.90) \quad=0.407$,
$\mathrm{P}(1$ claim $)=0.90 \exp (0.90) \quad=0.365$,
$\mathrm{P}(2$ claim $)=0.90^{2} \exp (-0.90) / 2 \quad=0.165$
$\mathrm{P}(>2$ claims $)=1 \quad 0.407 \quad 0.365 \quad 0.165=0.063$.
[2]
Expected loss (in units of Rs 1,000):
$D_{0}:(0.407 \times 0)+(0.365 \times 1,500)+(0.165 \times 3,000)+(0.063 \times 4,500)=1,326$
minimum.
$D_{1}:(0.407 \times 500)+(0.365 \times 1,467)+(0.165 \times 2,967)+(0.063 \times 4,467)=1,510$
$D_{2}:(0.407 \times 1,000)+(0.365 \times 1,967)+(0.165 \times 2,934)+(0.063 \times 4,434)=1,888$
Therefore, the answer is D_{0} : no reinsurance.
[Total 17]

