# INSTITUTE OF ACTUARIES OF INDIA 

## EXAMINATIONS

$19^{\text {th }}$ November 2013
Subject CT1 - Financial Mathematics

## Time allowed: Three Hours ( $\mathbf{1 0 . 3 0} \mathbf{- 1 3 . 3 0} \mathbf{H r s}$ ) <br> Total Marks: 100

## INSTRUCTIONS TO THE CANDIDATES

1. Please read the instructions on the front page of answer booklet and instructions to examinees sent along with hall ticket carefully and follow without exception.
2. Mark allocations are shown in brackets.
3. Attempt all questions, beginning your answer to each question on a separate sheet. However, answers to objective type questions could be written on the same sheet.
4. Please check if you have received complete Question Paper and no page is missing. If so, kindly get new set of Question Paper from the Invigilator.

## AT THE END OF THE EXAMINATION

Please return your answer book and this question paper to the supervisor separately.
Q. 1) Describe the cash flows by representing on a timeline:
i) For an organization which provides a 3-year annuity certain, with level payments made at the end of each year
ii) For a borrower of a 3-year fixed interest-only loan, with repayments made at the end of each year
Q. 2) Calculate the time in years for an investment to double at:
i) An effective rate of interest of $10 \%$ p.a.
ii) A nominal discount rate of $10 \%$ p.a. convertible monthly
Q. 3) The force of interest $\delta(\mathrm{t})$ at time t is $\mathrm{x}+2 \mathrm{yt}^{2}$ where x and y are constants. An amount of $\square 700$ invested at time $\mathrm{t}=0$ accumulates to $\square 1000$ at time $\mathrm{t}=4$ and $\square 1400$ at time $\mathrm{t}=10$.
i) Determine x and y .
ii) Calculate the constant force of interest that would give rise to the same accumulation from time $\mathrm{t}=0$ to time $\mathrm{t}=10$.
iii) At the force of interest calculated in (ii), calculate the present value of a continuous payment stream of $50 \exp (0.09 \mathrm{t})$ paid between from time $t=0$ to time $t=10$.
Q. 4) An employee proposes to purchase an annuity which is payable monthly in arrears for 10 years. The payments increase at each anniversary by $2 \%$ per annum. The annuity is to commence in exactly 8 years at an initial rate of $\square 20,000$ per annum. Calculate the amount required in 8 years' time to purchase the annuity assuming an interest rate of $9 \%$ p.a. effective.
Q. 5) An investor takes out a loan to be repaid in installments annually in arrears. The first instalment is $\square 500$, the second $\square 550$ and so on with the payments increasing by $\square 50$ per annum until the end of the 5th year after which the instalments would not increase, with no further payments after 10 years. The rate of interest charged by the lender is $9 \%$ per annum effective.
i) Calculate the amount of the loan.
ii) Calculate the interest and capital components of the second instalment.
iii) Calculate the amount of capital repaid in the instalment at the end of the eighth year.
Q. 6) A life insurance company makes the following investments:

| Date | Amount in $\square$ Billions |
| :--- | :---: |
| $1^{\text {st }}$ April, 2010 | 150 |
| $1^{\text {st }}$ October, 2010 | 225 |
| $1^{\text {st }}$ April, 2011 | 130 |
| $1^{\text {st }}$ April, 2012 | 175 |

The rates of return earned on money invested in the fund were as follows:

| Period | Rate of Return |
| :--- | :---: |
| $1^{\text {st }}$ April, 2010 to $30^{\text {th }}$ September, 2010 | $6 \%$ |
| $1^{\text {st }}$ October, 2010 to $31^{\text {st }}$ March, 2011 | $10 \%$ |
| $1^{\text {st }}$ April, 2011 to 31 $31^{\text {st }}$ March, 2012 | $9.5 \%$ |
| $1^{\text {st }}$ April, 2012 to $31^{\text {st }}$ March, 2013 | $9 \%$ |

It may be assumed that $1^{\text {st }}$ April to $30^{\text {th }}$ September and $1^{\text {st }}$ October to $31^{\text {st }}$ March are precise half year periods.
i) Calculate the linked internal rate of return per annum over the three years from $1^{\text {st }}$ April, 2010 to $31^{\text {st }}$ March, 2013, using half-year sub-intervals.
ii) Calculate the time weighted rate of return per annum over the three years from $1^{\text {st }}$ April, 2010 to $31^{\text {st }}$ March, 2013.
iii) Calculate the money weighted rate of return per annum over the three years from $1^{\text {st }}$ April, 2010 to $31^{\text {st }}$ March, 2013.
iv) Explain the relationship between answers to (a), (b) and (c) above.
Q. 7) Development of a new car by a motor car company begins on ${ }^{\text {st }}$ January 2013. The development costs are $\square 6$ million payable on $1^{\text {st }}$ January 2013 and $\square 24$ million payable continuously during 2014. From $1^{\text {st }}$ January 2015, the car will be ready for production and it is expected that a net income of $\square 8$ million per annum will be received quarterly in arrears.

Calculate the discounted payback period at an effective rate of interest of $12 \%$ per annum.
Q. 8) i) Give a definition of swap
ii) Describe briefly the main features of interest and currency swap contracts
iii) Discuss the risk characteristics to counterparties of a swap contract
Q. 9) A five year index-linked security is issued at time zero. The security pays coupons at the rate of $4 \%$ p.a. per 100 nominal in arrears and is redeemed at par. The coupons and redemption amount are linked to the index in the following manner:

Real Coupon payment rate $=$ nominal coupon rate* $\mathrm{I}(\mathrm{t}) / \mathrm{I}(0)$ where $\mathrm{I}(\mathrm{t})$ represents index at time ' $t$ ' and $\mathrm{I}(0)$ represents index at time zero. The index is

| Time | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Index | 125 | 128 | 135 | 142 | 145 | 148 |

i) Calculate the real yield to a non-tax payer if the price of stock is quoted at 104/- per 100 nominal
ii) Calculate the price at which an investor who pays tax of $20 \%$ on coupons only shall purchase the above security to get the same real yield as the nontax payer.
Q. 10) i) Explain what is meant by the "no arbitrage" assumption in financial mathematics.

A person bought a 3-year forward contract on $1^{\text {st }}$ August 2013 to buy 100 nominal of stock that pays coupons of $4 \%$ p.a payable quarterly on $30^{\text {th }}$ June, $30^{\text {th }}$ September, $31^{\text {st }}$ December and $31^{\text {st }}$ March each year for ever. The stock also pays $50 \%$ nominal on $31^{\text {st }}$ March 2015. The stock is priced such that it gives an effective yield of $5.5 \%$ p.a.
ii) Calculate the forward price of the contract, given that the risk free rate of interest is $6.5 \%$ p.a
iii) Determine the value of the forward contract on $1^{\text {st }}$ December 2014 when the stock price is $150 \%$ nominal given that the risk free rate of interest is $6.5 \%$ p.a
Q. 11) The prices for the 100 nominal zero-coupon bonds of various terms are given below:

| Term in years | 1 | 5 | 10 | 15 |
| :--- | :--- | :--- | :--- | :--- |
| Price | 93 | 75 | 45 | 35 |

Calculate
i) The continuous time spot rate of interest $\mathrm{Y}_{\mathrm{t}}$ for the terms of 10 years and 15 years
ii) The continuous time forward rate of $\mathrm{F}_{5,10}$ and $\mathrm{F}_{10,5}$.
Q. 12) An investor has to pay a lump sum of $35000 /-$ at the end of 13 years from now and an annuity certain of 15000/- p.a payable half-yearly in advance for 10 years starting from 10 years from now.
i) Calculate the present value of these two liabilities at an effective rate of interest of $6 \%$ p.a.
ii) Calculate the Discounted Mean Term of the liabilities

The investor wishes to immunise his fund against small movements in the rate of interest by investing the cash in two zero coupon bonds, Bond $X$ maturing in 7 years' time and Bond Y maturing in 10 years. The market prices of both bonds are calculated at an effective rate of interest of $6 \%$ per annum.
iii) Calculate the money invested in X and Y .
Q. 13) An investor invested an amount of $1 /-$ at the end of each of the years 1,2 and 3 . Let $i_{t}$ be the effective rate of interest in the year't'. Find the expected value and variance of accumulated value of this investment at the end of 3 years given the following information:

- $E\left(i_{1}\right)=5 \% ; \quad$ Standard deviation of $i_{1}=0.5 \%$
- $E\left(i_{2}\right)=5.5 \%$; Standard deviation of $i_{2}=0.7 \%$
- $E\left(i_{3}\right)=6 \% ; \quad$ Standard deviation of $i_{3}=0.9 \%$

You may assume that the interest rates in different years are independent of one another.

