Institute of Actuaries of India

CT3: Probability and Mathematical Statistics

Indicative Solution

November 2008

Introduction

The indicative solution has been written by the Examiners with the aim of helping candidates. The solutions given are only indicative. It is realized that there could be other points as valid answers and examiner have given credit for any alternative approach or interpretation which they consider to be reasonable
1.a) Stem and leaf diagram

b)Frequency Distribution

| Class interval
 (in 600 s) Frequency Class interval
 (in 000 s) Frequency
 1 100 0 501
 600 9
 101 200 1 601
 700 17
 201 300 2 701
 800 7
 301 400 2 801
 400 4
 401 500 6 901 $\mathbf{1 0 0 0}$ | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Histogram

c) Negatively Skewed
d) If the observation 998 is omitted, there are only 49 observations. The median position is $\frac{49+1}{2}=25$. The median is 638 . As the median position is 25 , there are 24 each to its right and left. Thus Q_{1} is $\frac{24+1}{2}$ th position. $\mathrm{Q}_{1}=\frac{509+523}{2}=516$
2. $y=1-e^{-\lambda x} \Rightarrow x=-\frac{1}{\lambda} \log (1-y)$

Hence, $\frac{d x}{d y}=\frac{1}{\lambda(1-y)}$. Therefore $f(y)=f(x)\left|\frac{d x}{d y}\right| ; x$ in terms of y

$$
=\lambda e^{-\lambda\left[-\frac{1}{\lambda} \log (1-y)\right]} \frac{1}{\lambda(1-y)}=1 \quad ; \quad 0<y<1
$$

Marks may be awarded if the candidate gives the df

3 The joint $p d f$ of (X, Y) is

$$
f(x, y)=x \exp [-x(1+y)] ; x>0, y>0
$$

c) Marginal of $X: g(x)=\int_{0}^{\infty} x \exp [-x(1+y) d y$

$$
=e^{-x} \quad ; \quad x>0
$$

Marginal of $Y: h(y)=\int_{0}^{\infty} x e^{-x} e^{-x y} d x$

$$
=\frac{1}{(1+y)^{2}} ; y>0
$$

b) Clearly $E[Y]=\int_{0}^{\infty} y \frac{1}{(1+y)^{2}} d y=\infty$

$$
E[Y] \text { does not exist }
$$

c) $E[Y / x]=\int_{0}^{\infty} y x e^{-x y} d y=\frac{1}{x} \int_{0}^{\infty} t e^{-t} d t=\frac{1}{x}$

Comment: $E[Y]$ does not exist even though $E[Y / x]$ exists.
(Total 7 Marks)
4 a) $M g f$ of exponential random variable is $\frac{\lambda}{\lambda-t}, t<\lambda$

$$
M g f \text { of } Y=X_{1}+\ldots+X_{n} i s\left(\frac{\lambda}{\lambda-t}\right)^{n}
$$

b) $C g f$ of Y is $C_{Y}(t)=n \log \left(\frac{\lambda}{\lambda-t}\right)$

$$
\begin{aligned}
& E[Y]=C_{Y}^{\prime}(0)=n\left(\frac{\lambda-t}{\lambda}\right) \frac{\lambda}{(\lambda-t)^{2}}=\frac{n}{\lambda} \\
& V[Y]=C_{Y}^{\prime \prime}(0)=\frac{n}{\lambda^{2}}
\end{aligned}
$$

5. Let A_{1}, A_{2}, A_{3} and A_{4} denote the four blood types $A, B, A B$ and O respectively.

Let S denote the soldiers blood type classified as type $A\left(i e . A_{1}\right)$.
It is given that i) $P\left(A_{1}\right)=0.41, P\left(A_{2}\right)=0.09, P\left(A_{3}\right)=0.04$ and $P\left(A_{4}\right)=0.46$
ii) $P\left(S / A_{1}\right)=0.88, P\left(S / A_{2}\right)=0.04, P\left(S / A_{3}\right)=0.10$ and $P\left(S / A_{4}\right)=0.04$

Hence, $P\left(A_{1} / S\right)=\frac{P\left(S / A_{1}\right) P\left(A_{1}\right)}{\sum_{L=1}^{4} P\left(S / A_{i}\right) P\left(A_{i}\right)}$

$$
\begin{aligned}
& =\frac{0.88 \times 0.41}{(0.88 \times 0.41)+(0.04)(0.09)+(0.10)(0.04)+(0.04)(0.46)} \\
& =0.93
\end{aligned}
$$

(Total 6 Marks)
6. $P\left(X_{3}=1\right)=P\left(X_{1}=1, X_{2}=1\right)+P\left(X_{1}=-1, X_{2}=-1\right)$

$$
\begin{aligned}
& =P\left(X_{1}=1\right) \cdot P\left(X_{2}=1\right)+P\left(X_{1}=-1\right) \cdot P\left(X_{2}=-1\right) \\
& =\frac{1}{4}+\frac{1}{4}=\frac{1}{2}
\end{aligned}
$$

$P\left(X_{3}=-1\right)=1 / 2$
$P\left(X_{1}=1, X_{3}=1\right)=P\left(X_{1}=1\right) \cdot P\left(X_{3}=1 / X_{1}=1\right)$
$=P\left(X_{1}=1\right) \cdot \frac{P\left(X_{3}=1, X_{1}=1\right)}{P\left(X_{1}=1\right)}$
$=P\left(X_{1}=1\right) \cdot \frac{P\left(X_{2}=17 \cdot P\left(X_{1}=1\right)\right.}{P\left(X_{1}=1\right)}=\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4}$
Similarly for other choices

$$
\begin{aligned}
& P\left(X_{1}=1, X_{3}=-1\right)=P\left(X_{1}=1\right) P\left(X_{3}=-1\right) \\
& P\left(X_{1}=-1, X_{3}=1\right)=P\left(X_{1}=-1\right) P\left(X_{3}=1\right) \\
& P\left(X_{1}=-1, X_{3}=-1\right)=P\left(X_{1}=-1\right) \cdot P\left(X_{3}=-1\right)
\end{aligned}
$$

But $P\left(X_{1}=1, X_{2}=1, X_{3}=-1\right) \neq P\left(X_{1}=1\right) \cdot P\left(X_{2}=1\right) \cdot P\left(X_{3}=-1\right)$
(Total 3 Marks)
7. Let X denote the number of children with birth defects whose mothers smoke while pregnant.
If there is no relationship between maternal smoking and birth defects, then X follows binomial with $n=20, p=0.4$
$P(X \geq 12)=P\left(\frac{X-n p}{\sqrt{n p q}}>\frac{11.5-8}{\sqrt{4.8}}\right]$, on applying normal approximation and correction or continuity.

$$
\begin{aligned}
& =P(Z>1.59) \\
& =0.0559
\end{aligned}
$$

(Total 3 Marks)
8.a) We have

$$
\begin{aligned}
E\left[X_{k}^{2}\right] & =\operatorname{VAR}\left[X_{k}\right]+\left(E\left[X_{k}\right]\right)^{2}=1+0^{2}=1 \\
E[Y] & =\sum_{k=1}^{50} E\left[X_{k}^{2}\right]=50
\end{aligned}
$$

b) We can write that Y follows $N\left(50, \sigma_{Y}^{2}\right)$ (approximately), where

$$
\sigma_{Y}^{2}=E\left[Y^{2}\right]-(E[Y])^{2}=2600-(50)^{2}=100
$$

Then, $P[Y<60] \approx P\left[N(0,1)<\frac{60-50}{10}\right]=0.8413$
Alternatively: X_{i} follows $\mathrm{N}(0,1) ; X_{i}^{2}$ _follows Chi-square with 1 df .
$\sum X_{i}^{2}$ follows Chi square dist with 50 df (assuming X_{i}^{2} are independent).
which is same as Gamma distribution with parameters $\alpha=50 / 2=25$ and $\lambda=1 / 2$
$\mathrm{E}[\mathrm{Y}]=\alpha / \lambda=25 / 0.5=50 ; \operatorname{Var}[\mathrm{Y}]=\alpha / \lambda^{2}=100$
9. The joint $p d f$ of (X, λ) is

$$
f_{X, \lambda}(x, \lambda)=\frac{r^{p}}{\Gamma p x!} \lambda^{x+p-1} e^{-\lambda(r+1)}
$$

Hence, $f_{x}(x)=\int_{0}^{\infty} f_{x, \lambda}(x, \lambda) d \lambda$

$$
\begin{aligned}
& =\frac{r^{p} \Gamma(x+p)}{x!\Gamma p(+1)^{x+p}} \\
& =\left(\frac{r}{r+1}\right)^{p}\left(\frac{1}{(r+1)^{x}}\right) \frac{(x+p-1)!}{(p-1)!x!} \\
& =\binom{x+p-1}{x}\left(\frac{1}{r+1}\right)^{x}\left(\frac{r}{r+1}\right)^{p}
\end{aligned}
$$

which is a negative binomial with parameters p and $\left(\frac{r}{r+1}\right)$
Hence $E[X]=\frac{p}{r}$ and $V[X]=\frac{p(r+1)}{r^{2}}$
10. Let W be the time taken for the first occurrence of the event and $F(w)$ be its distribution function.
The first occurrence o the event will take place after w only, if no occurrence takes place in $[0, w]$
Let X denote the number occurrences of the event.
Hence, $P(W>w)=P(X=0)=e^{-\lambda w}$ (by assumption)
Hence W has exponential distribution with mean $\frac{1}{\lambda}$
11. a) $X \sim N(12,0.5)$, so $\bar{X} \sim N(12,0.25)$

Probability of type I error : $P_{H_{0}}(\bar{X}<11.5)=P\left(\frac{\bar{X}-12}{0.25}<\frac{11.5-12}{0.025}\right)$

$$
=P\left(Z<\frac{-.5}{0.25}\right)=P(Z<-2)=0.0228
$$

b)Power at $11.25: P_{H_{1}}(\bar{X}<11.5)=P\left(Z<\frac{11.5-11.25}{0.25}\right)$

$$
=P(Z<1)=0.8413
$$

12. a) $n=400$

$$
p=\frac{64}{400}=0.16 \quad q=0.84
$$

Standard error (se) : $\sqrt{p q / n}=\sqrt{\frac{0.16 \times 0.84}{400}}=0.01839$
b) 99% confidence interval is

$$
\begin{aligned}
(p-2.58 \text { se, } p+2.58 & \text { se })=(0.16-2.58 \times 0.0183,0.16+2.58 \times 0.0183) \\
& =(0.1128,0.2072)
\end{aligned}
$$

13. a) $H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2} \quad H_{1}: \sigma_{1}^{2} \neq \sigma_{2}^{2}, \quad n_{1}=n_{2}=16$

$$
F=\frac{s_{1}^{2}}{s_{2}^{2}}=\frac{0.040}{0.028}=1.43 \text { with }(15,15) \mathrm{df}
$$

Table $F_{(15,15)}$ at 0.2 level is 1.55
Do not reject H_{0}. Pooling of variances is appropriate
b) 95% confidence interval for difference in means

$$
\begin{aligned}
& {\left[\left(\bar{x}_{1}-\bar{x}_{2}\right)\right]-t_{\alpha / 2} \sqrt{s_{p}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)},\left(\bar{x}_{1}-\bar{x}_{2}\right)+t_{\alpha / 2} \sqrt{s_{p}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)} } \\
&=(0.94-0.62)-2.042 \sqrt{0.034\left(\frac{1}{16}+\frac{1}{16}\right)}, \\
&=(0.19,0.45) \\
& \text { where } s_{p}^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}
\end{aligned}
$$

c) The mean exposure in 1973 was higher than in 1979 since, the interval does not contain zero and is positive valued.
14. a) Likelihood: $L(\alpha, \beta)=\left\{\begin{array}{cc}\prod_{i=1}^{n}\left(\frac{\alpha}{\beta}\right)\left(\frac{x_{i}}{\beta}\right)^{\alpha-1} & \text { if } \\ 0 & 0<x_{1}, \ldots, x_{n}<\beta \\ \text { otherwise }\end{array}\right.$

$$
=\left\{\begin{array}{cc}
\left(\frac{\alpha}{\beta}\right)^{n} \frac{1}{\beta^{n(\alpha-1)}} \prod_{i=1}^{n} x_{i}^{(\alpha-1)} & \text { if } \\
0<x_{(n)}<\beta \\
0 & \text { otherwise }
\end{array}\right.
$$

MLE of β, say β is the largest observation, $X_{(n)}=t$

$$
L(\alpha)=\left(\frac{\alpha}{t}\right)^{n} \frac{1}{t^{n(\alpha-1)}} \prod_{i=1}^{n} x_{i}^{\alpha-1}
$$

$\log L(\alpha)=n \log \alpha-n \log t-n(\alpha-1) \log t+\Sigma(\alpha-1) \log x_{i}$

$$
\begin{aligned}
& \frac{\partial \log L}{\partial \alpha}=\frac{n}{\alpha}-n \log t+\sum \log x_{i}=0 \quad \Rightarrow \\
& \hat{\alpha}=n /\left(n \log t-\sum \log x_{i}\right)
\end{aligned}
$$

b) $\hat{\beta}=25$

$$
\begin{aligned}
\hat{\alpha}= & \frac{14}{[14 \log 25-(\log 22+\log 23.9+\log 20.9+\log 23.8+\log 25+\log 24+\log 21.7} \\
& +\log 23.8+\log 22.8+2 \log 23.1+\log 23.5+\log 23.0)] \\
= & \frac{14}{1.1115}=12.595
\end{aligned}
$$

15. a) The expected frequencies

Quality		Days			
	Mon	Tue	Wed	Thur	Fri
Excellent	45.6	74.4	78.6	71.4	30
Good	15.2	24.8	26.2	23.8	10
Fair	13.2	21.6	22.8	20.7	8.7
Poor	1.97	3.2	3.4	3.1	1.13

20% of all frequencies is 4 .
The number of cell frequencies less than 5 and less than 1 are 5 and 0 respectively.
Hence, the criterion is not satisfied.
b) After combining we have the following table.

Days
$157 \quad 243$
Quality 4357
The calculated χ^{2} value 0.47 . The table value of χ^{2} at 5% level for $1 d f$ is 3.841 .
Do not reject. The quality and the production days are not independent.
16. $H_{0}: \mu_{A}=\mu_{B}=\mu_{C} \quad H_{1}:$ at least one of them is not equal

Correction factor (CF): $(17.09)^{2} / 15=19.4712$
Total sum of squares(TSS): $1.69^{2}+0.64^{2}+\ldots+0.62^{2}-\mathrm{CF}=1.679$
Variety sum of squares: $\left\{\left[(5.65)^{2}+(6.82)^{2}+(4.62)^{2}\right] / 5\right\}-\mathrm{CF}=0.485$
Error sum of squares (ESS):1.194
ANOVA

Source	Sum of squares	df	MSS	F
Between varieties	0.485	2	.242	2.435
Error	1.194	12	.100	
Total	1.679	14		

Table value of $F_{2,12,05}=3.88$. Do not Reject H_{0}
(Total 4 marks)
17 a) The estimated correlation coefficient

$$
\begin{aligned}
& S_{y y}=\left[n \Sigma y^{2}-(\Sigma y)^{2}\right] / n=63.89 ; \quad S_{x y}=[n \Sigma x y-(\Sigma x)(\Sigma y)] / n=-572.439 \\
& S_{x x}=\left[n \Sigma x^{2}-(\Sigma x)^{2}\right] / n=7150.05 \\
& \quad r=\frac{S_{x y}}{\sqrt{S_{x x} S_{y y}}} \\
& \quad=-0.847
\end{aligned}
$$

For testing the hypothesis $H_{0}: \rho=0$ against $H_{l}: \rho \neq 0$, the test statistic is

$$
t=\frac{r \sqrt{n-2}}{\sqrt{1-r^{2}}}=-7.635
$$

The table value of $t_{23,0.05}$ is 1.714 . Reject H_{0}
b) The random variables $e_{i}^{\text {ss }}$ are independently and normally distributed

The mean of $\left(Y / X=x_{i}\right)$ is $\beta_{0}+\beta_{1} x_{i}$
The variance of e_{i}^{s} are σ^{2}

$$
\begin{aligned}
\hat{\beta}_{1} & =\frac{S_{x y}}{S_{x x}} \\
& =-0.08 \\
\hat{\beta}_{0} & =\bar{y}-\hat{\beta} \bar{x}=13.64
\end{aligned}
$$

c) The unbiased estimate of σ^{2} is $s^{2}=\frac{1}{n-2}\left[S_{y y}-\frac{S_{x y}{ }^{2}}{S_{x x}}\right]$

$$
=\frac{18.09}{(25-2)}=0.79
$$

d) $t=\frac{\beta_{1}}{s / \sqrt{S_{x x}}} \sim t_{23}(0.05)$

$$
=-7.62
$$

The table value of $t_{23}(0.05)$ is 1.714 .
Hence, Reject H_{0}
(The candidate can choose other levels also and give their decisions)
e) The 90% confidence interval for β_{0} is

$$
\begin{aligned}
& {\left[\hat{\beta}_{0}-t_{0.05} s \sqrt{\Sigma x^{2}} / \sqrt{n S_{x x}}, \hat{\beta}_{0}+t_{0.05} s \sqrt{\Sigma x^{2}} / \sqrt{n S_{x x}}\right] } \\
= & {[12.64,14.64)] }
\end{aligned}
$$

The 99% confidence interval for β_{I} is

$$
\begin{aligned}
& {\left[\hat{\beta}_{1}-t_{0.005} s \sqrt{S_{x x}}, \hat{\beta}_{1}+t_{0.005} s \sqrt{S_{x x}}\right] } \\
= & {[-0.109,-0.051] }
\end{aligned}
$$

f) $R^{2}=\frac{S_{x y}{ }^{2}}{S_{x x} S_{y y}}$

$$
=0.717
$$

