Institute of Actuaries of India

Subject CT1 - Financial Mathematics

May 2014 Examinations

INDICATIVE SOLUTIONS

Solution 1 :

The rate of interest for the first 7 yrs. is 8% per annum convertible monthly. The Half-yearly effective interest is: $=\left(1+\frac{0.09}{12}\right)^{6}-1$
= 4.067\%

The effective half-yearly interest for next 8 years is 3%.
The accumulated value at the end of 15 years is:

$$
\begin{aligned}
& =2000 \tilde{s}_{744} @ 4.067 \% \times(1.03)^{116} @ 3 \%+2000 \tilde{s}_{745}\left(\begin{array}{ll}
0 \\
& \\
\end{array}\right. \\
& \bar{s}_{\text {T44 }} @ 4.067 \%=19.1236 \\
& \bar{s}_{-145} @ 3 \%=20.7615 \\
& =2000 \times 19.1236 \times 1.6047+2000 \times 20.7615 \\
& \text { = ₹ } 102,898.28
\end{aligned}
$$

[4 Marks]

Solution 2: The accumulated value of cash flow stream is:

$$
\begin{aligned}
& \int_{0}^{8}(4+0.5 t)\left\{e^{\int_{4}^{8}}(0.04+0.005 s) d s\right. \\
&= \int_{0}^{8}(4+0.5 t) \exp \left[0.04 s+\frac{0.005 s^{2}}{2}\right] \\
&= \int_{0}^{8}(4+0.5 t) \exp \left[0.32+0.16-\left(0.04 t+\frac{0.005 t^{2}}{2}\right)\right] d t \\
&= \int_{0}^{8}(4+0.5 t) \exp \left[0.48-\left(0.04 t+\frac{0.005 t^{2}}{2}\right)\right] d t \\
& \text { Let } f(x)=0.48-\left(0.04 t+\frac{0.005 t^{2}}{2}\right)
\end{aligned}
$$

The above integral can be written as

$$
\begin{aligned}
& =\int_{0}^{8}-100 f^{\prime}(x) \exp [f(x)] d t \\
& =-100 \exp \left[0.48-\left(0.04 t+\frac{0.005 t^{2}}{2}\right)\right]_{0}^{8} \\
& =-100\left(e^{0}-e^{0.48}\right) \\
& =61.60
\end{aligned}
$$

Solution 3 :

a. An equation of value expresses the equality of the present value of positive and negative (or incoming and outgoing) cash flows that are connected with an investment project, investment transaction etc.
b.

$$
\begin{aligned}
& 4000=400 \times a_{710}+x \% \times 4000 \times v^{10} @ 7 \% \\
& x=\frac{4000-400 \times 7.0236}{4000 \times 0.50935} \\
& \quad x=58.55 \%
\end{aligned}
$$

Solution 4 :

i. The first investor buys the government bill at 95 and sells at 98.42 after 60days. Working in years, if the annual rate of interest earned is i_{1}, then

$$
95\left(1+i_{1}\right)^{\frac{60}{365}}=98.42 \quad \Rightarrow \quad i_{1}=24 \%
$$

The second investor buys the bill at 98.42 and redeems at 100 after 30 days. If the annual rate of interest earned is i_{2} then
$98.42\left(1+i_{2}\right)^{\frac{30}{365}}=100 \quad \Rightarrow \quad i_{2}=21.38 \%$

The first investor earned a higher rate of interest than the second investor.
ii. The discount factor for 91 days under simple discount is:
$(1-n d)=\left(1-\frac{91}{265} \times 0.09\right)=0.9775$

Equating this to effective discount factor:
$v^{\frac{21}{365}}=0.9775 \Rightarrow \gg(1+i)^{\frac{-21}{365}}=0.9775 \Rightarrow \gg i=9.53 \%$
(Student can use $1 / 4^{\text {th }}$ of a year in the above calculations as approximation)

Solution 5 :

i. Let i_{t} be the gross redemption yield (spot yield) over t years:

For one year: yield is 10%, thus $\mathrm{i}_{1}=0.1$
For two years: $\left(1+\mathrm{i}_{2}\right)^{2}=1.1 \times 1.09$, thus $\mathrm{i}_{2}=0.094988$
For three years: $\left(1+\mathrm{i}_{3}\right)^{3}=1.1 \times 1.09 \times 1.08$, thus $\mathrm{i}_{3}=0.089969$
For four years: $\left(1+i_{4}\right)^{4}=1.1 \times 1.09 \times 1.08 \times 1.07=0.084942$
ii. The Price of the bond is $7\left\{(1.1)^{-1}+(1.094988)^{-2}+(1.089969)^{-3}\right\}+$ $107 \times(1.084942)^{-4}$
$=17.60758+77.22495=94.83253$
To find the gross redemption yield on the bond, we have

$$
94.83253=7 \mathrm{a}_{4-1}+100 \mathrm{v}^{4}
$$

At 9%, from Tables, $a_{4-\jmath}=3.2397$ and $v^{4}=0.70843$ and at 9%, the R.H.S of the above equation is 93.5209

At 8%, from Tables, $\mathrm{a}_{4^{-\dagger}}=3.3121$ and $v^{4}=0.73503$ and at 8%, the R.H.S of the above equation is 96.6877

By interpolation,

$$
\begin{aligned}
\mathrm{i}=0.09 & -0.01 \times \frac{(94.83253-93.5209)}{(96.6877-93.5209)} \\
& =0.09-0.004142=0.085858=8.58 \%
\end{aligned}
$$

Solution 6 :

i. The running yield on the property is defined as the rental income net of all management expenses divided by the cost of buying the property gross of all purchase expenses.
ii. The running yield from the property investments will normally be higher than that for ordinary shares for the below mentioned reasons

1. Dividends usually increase annually, whereas rents are reviewed less often;
2. Property is much less marketable;
3. Expenses associated with property investment are much higher;
4. Large, indivisible units of property are much less flexible; and
5. On an average, dividends will tend to increase more rapidly than rents, as dividends benefit from returns arising from the retention of profits and their reinvestment within the company.

Solution 7: The minimum effective yield required is

$$
\text { For } \mathrm{i}=0.08 \text {, from tables } \mathrm{i}^{(12)}=0.077208
$$

By employing the capital gains test,

$$
i^{(p)}>\left(1-t_{1}\right) \frac{D}{R} \quad \text { Where } t_{1} \text { is the income tax rate }
$$

$$
(1-0.1) \frac{0.09}{1.09}=0.074311
$$

As $\mathrm{i}^{(12)}>0.074311$, there is Capital gain on the investment

Also, we should assume that the loan issued is redeemed as late as possible i.e. 25 years from the date of issue to obtain minimum yield.

Consider the price of the loan as P :
$P=5,00,000 \times 0.09 \times 0.9 \times \mathrm{a}_{25-{ }^{-12)}}{ }^{(12)}$
$+(5,45,000-0.2(5,45,000-\mathrm{P})) \times \mathrm{v}^{25}$ at 8%
Considering $\mathrm{a}_{25{ }^{-}{ }^{(12)}=\mathrm{i} / \mathrm{i}^{(12)} \mathrm{a}_{25}{ }^{-} \mid}$
$=40500 \times 1.036157 \times 10.6748+(436000+0.2 P) \times 0.14602$
$P=₹ 5,27,016.85$
[8 Marks]

Solution 8 :

i. A futures contract is a standardized, exchange tradable contract between two parties to trade a specified asset on a set date in the future at a specified price.

A forward contract is an agreement made between two parties under which one party agrees to buy from the other party a specified amount of an asset at a specified price, called the forward price, on a specified future date.
ii. The current value of the forward price of the old contract is:

$$
\begin{equation*}
75(1.08)^{8}-15(1.08)^{-4}-20(1.08)^{-8} \tag{1}
\end{equation*}
$$

Whereas the current value of the forward price of the new contract is:

$$
\begin{equation*}
175-15(1.08)^{-4}-20(1.08)^{-8} \tag{2}
\end{equation*}
$$

Hence, the current value of old forward contract is:
(2) $-(1)=$ ₹ 36.18

Alternatively, the value can be directly arrived as:

$$
\begin{equation*}
175-75(1.08)^{8}=₹ 36.18 \tag{3}
\end{equation*}
$$

(The dividend is not relevant in this calculation.)
iii. Assuming 'no arbitrage':

The Present value of the payment is:
$100 \mathrm{v}^{0.25}$ (at 8%) $+100 \mathrm{v}^{0.75}$ (at 9\%)
$=100 \times(0.98094+0.93741)=191.83$
Hence the forward price is: $F=(1200-191.83) \times 1.09=₹ 1098.90$

Solution 9 :

i. Let the accumulation of an investment of 1 at the beginning after 3 years be S_{3}.

Let the annual effective interest rate for the year t be i_{t}.
Expected annual interest rate in each of the three years is:
Year 1, $E\left(i_{1}\right)=1 / 3(0.04+0.05+0.06)=0.05$
Year 2, $E\left(i_{2}\right)=0.4 \times 0.08+0.6 \times 0.05=0.062$
Year 3, $E\left(i_{3}\right)=0.9 \times 0.07+0.1 \times 0.05=0.068$

As the annual effective interest rate in any year is independent of the interest rate in any other years,
$E\left(125000 S_{3}\right)=125000 E\left(S_{3}\right)=125000 E\left(1+i_{1}\right) E\left(1+i_{2}\right) E\left(1+i_{3}\right)$

$$
=125000 \times 1.05 \times 1.062 \times 1.068=₹ 1,48,865.85
$$

ii. Assuming the interest rates declared each year is the maximum probable rates, then the accumulated amount would be

$$
125000 \times 1.06 \times 1.08 \times 1.07=₹ 153,117
$$

However, if the interest rate declared in any year is less than the maximum probable rate then the accumulation of investment in the three year period would be below ₹153,000.

Thus, the probability to declare highest probable rate of interest in each of the years is,

$$
1 / 3 \times 0.4 \times 0.9=0.12
$$

Solution 10 :

I.
$N P V_{x}=-39,90,000-20,00,000 \times v^{2}+\left\{11,20,000 \times v^{5}+11,20,000 \times 1.02752 \times v^{6}+\right.$ $\left.\cdots . . .+11,20,000 \times 1.02752^{14} \times v^{19}\right\} @ 12 \%$

The item in brackets can be solved as:

```
\(11,20,000 v^{5}\left(1+1.02752 v+\cdots \ldots+1.02752^{14} v^{14}\right)\)
    \(=11,20,000 v^{5} @ 12 \% \times \ddot{a}_{715} @ 9 \% \quad\) as \(1.02752 v=\frac{1}{1.09}\)
\(=11,20,000 \times 0.56743 \times 8.0607 \times 1.09\)
    \(=55,83,796\)
\(\therefore N P V_{x}=-39,90,000-20,00,000 \times 0.79719+55,83,796\)
```

 \(=-₹ 584\)
 ii. As the amount in (i) above less is than 1000, it is ignored and the NPV of project X is zero. Therefore, IRR=12\%
iii. NPV of project Y is:

$$
\begin{align*}
& -2,00,000 \ddot{a}_{712}+120,000 v^{11}\left(I a_{\urcorner 15}\right) @ 11 \% \\
& -2,00,000 \times 7.2065+120,000 \times 0.3172 \times 44.06=₹ 2,35,799.84 \tag{4}
\end{align*}
$$

iv. The IRR of project X is 12%. Therefore, to find the value of A, the NPV @ 12% will become zero.

$$
\begin{aligned}
& -2,00,000 \ddot{a}_{712}+A v^{11}\left(I a_{145}\right)=0 @ 12 \% \text { p.a } \\
& -2,00,000 \times 6.1944 \times 1.12+A \times 0.28748 \times 40.7310=0
\end{aligned}
$$

$$
A=\frac{1387545.60}{40.7310 \times 0.28748}
$$

$$
\mathrm{A}=₹ 1,18499 /-
$$

Solution 11 :

i. Present value of the liabilities is:

$$
100000 \times \mathrm{a}_{12^{-},}+300000 \times \mathrm{v}^{20} \text { at } 6 \%
$$

$$
=100000 \times 8.3838+300000 \times 0.31180
$$

= ₹931,920
ii. Discounted Mean Term (DMT) the liabilities are:

$$
\begin{aligned}
& \left(1 \times 100000 \times v+2 \times 100000 \times v^{2}+\ldots \ldots+12 \times 100000 \times v^{12}\right) \\
& \frac{+300000 \times 20 \times v^{20}}{100000 \times a_{12}-1+300000 \times v^{20}} \\
& \text { at } 6 \% \\
& =\quad \frac{\left(100000 \times 1 a_{12-}\right)+300000 \times 20 \times v^{20}}{100000 \times a_{12}-300000 \times v^{20}} \\
& =\quad \frac{(100000 \times 48.7207)+300000 \times 20 \times 0.31180}{931,920} \\
& =\quad \frac{6,742,870}{931,920}=7.2354 \text { years }
\end{aligned}
$$

iii. Let the nominal amounts of the Security- X and Security- Y be equal to X and Y respectively:

If the PV of assets is equal to the PV of liabilities then:

$$
\begin{equation*}
X\left(0.07 a_{7^{-1}}+v^{7}\right)+Y\left(0.05 a_{22^{-}-1}+v^{22}\right)=931,920 \quad \text { at } 6 \% \tag{A}
\end{equation*}
$$

If the DMT of assets is equal to the DMT of liabilities then:

$$
\frac{\mathrm{X}\left(0.07 \mathrm{Ia}_{7-1}+7 \mathrm{v}^{7}\right)+\mathrm{Y}\left(0.05 \mathrm{Ia}_{22-}+22 \mathrm{v}^{22}\right)}{931,920}=7.2354
$$

i.e. $\quad X\left(0.07 \mathrm{Ia}_{7^{-}}+7 \mathrm{v}^{7}\right)+\mathrm{Y}\left(0.05 \mathrm{la}_{22^{-} \mid}+22 \mathrm{v}^{22}\right)=6,742,870$
at 6\%
(B)

From (A), we can have:
$X(0.07 \times 5.5824+0.66506)+Y(0.05 \times 12.0416+0.27751)$ $=931,920$

$$
1.055828 \mathrm{X}+0.87959 \mathrm{Y}=931,920
$$

From (B), we can have:
$X(0.07 \times 21.0321+7 \times 0.66506)+Y(0.05 \times 110.9827+22 \times 0.27751)$ $=6,742,870$
$6.127667 \mathrm{X}+11.654355 \mathrm{Y}=6,742,870$

Then,
$6.127667(931,920-0.87959 \mathrm{Y})+11.654355 \mathrm{Y}=6,742,870$ 1.055828
$Y(11.654355-\underline{6.127667 \times 0.87959})$
1.055828
$=6,742,870-\underline{6.127667 \times 931,920}$
1.055828
$Y(6.549513)=1334322.94$

Thus, $Y=₹ 2,03,728.57$

$$
\text { And } X=\frac{9,31,920-0.87959 \times 2,03,728.57}{1.055828}=₹ 7,12,921.41
$$

iv. \quad The third condition for immunization is that that convexity of the assets is greater than that of the liabilities. It appears that the asset payments are more spread around DMT than the liability payments, which indicates that the convexity of assets (Security-X and Security-Y) is more than the convexity of liabilities. Hence, the investment trust liabilities are likely to be immunized against small, uniform changes in interest rates.

Solution 12 :

i. The monthly effective interest rate is: 0.6434%

The payment reaches ₹ 700 at time t where t is:
$100+5(\mathrm{t}-1)=700$
$\mathrm{T}=121$ months

The principal of the loan is:

Present value of increasing instalments up to 121 months plus present value of level payment of ₹700 per month for the remaining 59 months is

Loan principal $=95 a_{7121}+5(I a)_{7_{121}}+700 a_{759} v^{121}$
$a_{750}=48.9643 ; a_{7121}=83.8926$
$(I a)_{7121}=4467.52$

Loan principal = ₹ 46,082

Alternatively, the principal can be calculated as:
Loan principal $=95 a_{7120}+5(I a)_{7120}+700 a_{760} v^{120}$
ii. The Capital outstanding after the payment of the $24^{\text {th }}$ instalment is:

The $25^{\text {th }}$ instalment is: $100+24 X 5=220$
Loan outstanding after the payment of the $24^{\text {th }}$ instalment $=P . V$ of future instalments
Therefore, the capital outstanding after the $24^{\text {th }}$ instalment is:
Outstanding loan $=215 a_{797}+5(I a)_{797}+700 a_{759} v^{97}$

$$
\begin{aligned}
& \quad a_{750}=48.9643 ; a_{797}=71.9894 ;(I a)_{797}=3167.86 \\
& \text { Outstanding loan }=215 \times 71.9894+5 \times 3167.86+700 \times 48.9643 \times 0.53681
\end{aligned}
$$

Outstanding loan = ₹49,716.20

Alternatively, the principal can be calculated as:
Outstanding loan $=215 a_{796}+5(I a)_{796}+700 a_{760} v^{96}$
iii. The outstanding loan at the beginning of the $25^{\text {th }}$ instalment is $49,716.20$

The interest paid is $49,716.20 \times 0.006434=₹ 319.87$

The capital portion $=220-319.87=-₹ 99.87$
The Capital due in the $25^{\text {th }}$ instalment is negative because the repayments are increasing overtime.
iv.

The rescheduled instalment will be:

$$
\begin{aligned}
& X v+X(1.01923) v^{2}+\cdots+X(1.01923)^{9} v^{10}=49716.20 @ 6 \% \\
& (1.01923) v @ 6 \%=v @ 4 \%
\end{aligned}
$$

The above equation can be rewritten as:

$$
\begin{aligned}
& \frac{X}{1.01923} a_{710} @ 4 \%=49716.20 \\
& X=49716.20 \times \frac{1.01923}{8.1109} \\
& X=₹ 6,247.40
\end{aligned}
$$

