# Actuarial Society of India 

## Examinations

May 2006

# CT1 -Financial Mathematics 

## Indicative Solutions

Q1)
(i) Present value of 1 payable at the end of 10 year
$=v^{\wedge} 10$
$=\operatorname{Exp}\left[-\left({ }_{0} ?^{10}\left(0.004 \mathrm{t}+0.0002 \mathrm{t}^{2}\right) \mathrm{dt}\right)\right]$
$=\operatorname{Exp}\left[-\left(0.004 \mathrm{t}^{2} / 2+0.0002 \mathrm{t}^{3} / 3\right)_{0}{ }^{10}\right]$
$=\operatorname{Exp}[-0.2-0.06667]=\operatorname{Exp}[-26667]$
$=0.765926$
Present Value of 1000 payable at the end of 10 year is
$=765.926$
(ii) Annual effective rate of interest $i$ is such that
$(1+\mathrm{i})^{\wedge}(-10)=0.765926$
$(1+\mathrm{i})^{\wedge}(10)=1.305609$
I $=2.70 \%$

Q2)
(i) d is the interest payable at the beginning of the year on a loan of 1unit repayable at the end of the year. The corresponding interest payable at the end of year on 1 unit of loan is i. Thus, d must equal the present value at the beginning of the year of the payment i payable at the end of the year ie $d=i v$.
(ii) Let $\mathrm{d}^{(2)}$ be the nominal rate of discount per annum convertible half yearly
(a) $\quad 1-\mathrm{d}=(1-0.0225)^{\wedge} 4=0.912992$
$\mathrm{d}=0.087007$
Hence $\left(1-d^{(2)} / 2\right)^{\wedge} 2=0.912992$
$\begin{aligned} \mathrm{d}^{(2)} & =2^{*}\left(1-0.912992^{\wedge}(1 / 2)\right) \\ & =8.8988 \%\end{aligned}$
(b) 1-d $=(1-2 * 0.05)=0.9$
$\mathrm{d}=0.1$
Hence $\left(1-d^{(2)} / 2\right)^{\wedge} 4=0.9$
$\mathrm{d}^{(2)} \quad=2 *\left(1-0.9^{\wedge}(1 / 4)\right)$
$=5.199 \%$
(iii) Let d be the simple annual discount rate. Then

| $\left(1-\mathrm{d}^{*} 91 / 365\right)$ | $=$ | $(1+\mathrm{i})^{\wedge}(-91 / 365) \quad$ where $\mathrm{i}=0.05$ |
| :--- | :--- | :--- |
| $\left(1-\mathrm{d}^{*} 91 / 365\right)$ | $=$ | 0.98791 |
| $\mathrm{~d}^{*} 91 / 365$ | $=$ | 0.01206 |
| d | $=$ | $4.8493 \%$ |

Q3)
(i) It enables us to find the price of complex instrument instruments by 'replicating' the payoffs.
(ii) Present value of dividend is
$60 \mathrm{v}^{\wedge}(1 / 2)$ at $5.0 \%+60 \mathrm{v}$ at $5.5 \%$
$=60^{*}(1.05)^{\wedge}(-1 / 2)+60^{*}(1.055)^{\wedge}(-1)$
$=60 *(0.9759+0.9479)$
$=115.428$
Hence, forward price, F, is:
(550-115.428)*1.055 $=458.4735$

Q4)
(i) Total amount paid in 36 instalments $=550 * 36=19,800$

The original purchase price $\quad=15,000$
Total interest paid over 3 year period $=19,800-15,000=4,800$

$$
\begin{aligned}
\text { Flat Rate of interest } & =4,800 /(3 * 15,000) \\
& =10.67 \%
\end{aligned}
$$

(ii) Let APR be the i such that
$12 * 550 * a^{(12)}{ }_{[3]}=15,000$ at rate of interest i
$\begin{array}{lll}\mathrm{a}^{(12)}{ }^{(12]} & =15,000 / 6600 \\ \mathrm{a}^{(12)_{3]}} & = & 2.27273\end{array}$
$\mathrm{a}^{(12)}{ }^{3}$ ] at $20.0 \%=2.29322$
$\mathrm{a}^{(12)}{ }^{3]}$ at $21.0 \%=2.26668$
By interpolation
$\mathrm{i}=20.77 \%$

Q5)
(i)
? The bonds issued by governments with good rating are generally considered secure.
? Have low volatility of return relative to other investments
? Can provide guaranteed returns if held to maturity
? Can be risky in real term i.e. no protection against inflation
(ii)
(a) Let present value of the P .

$$
\begin{aligned}
& \mathrm{P}=6 *(1-0.30) * \mathrm{a}(2)[20]+120^{*} \mathrm{v}^{\wedge} 20-(120-\mathrm{P}) * 0.30^{*} \mathrm{v}^{\wedge} 20 \text { at } 8 \% \\
& \left.\mathrm{a}[20]=9.8181, \quad \mathrm{i} \mathrm{f}^{(2}\right)=1.019615, \quad \mathrm{v}^{\wedge} 20=0.21455 \\
& \mathrm{P}=4.2 * 1.019615 * 9.8181+120^{*} 0.21455-(120-\mathrm{P}) * 0.30 * 0.21455 \\
& \mathrm{P}(1-0.30 * 0.21455)=42.04486+25.746 * 0.70=60.06706 \\
& \mathrm{P}=64.19924
\end{aligned}
$$

(b) Since interest payments are at half yearly duration, it is easier to work with unit of half year. The effective rate per unit is $3 \%$.

The duration $\left.=\left(? \mathrm{t}^{*} \mathrm{C}_{\mathrm{t}} *{ }^{*} \mathrm{t}^{\mathrm{t}}\right) / ? \mathrm{C}_{\mathrm{t}}{ }^{*} \mathrm{v}^{\mathrm{t}}\right)$
The numerator for the bond is
${ }_{1}$ ? ${ }^{40} 3 * t^{*} v^{t}+40 * 120 v^{40}$
$3(\mathrm{Ia})_{(40)}+40 * 120 * \mathrm{v} 40$
$(\mathrm{Ia})_{(40)}=\left(\right.$ adue $\left.(40)-40 \mathrm{v}^{\wedge} 40\right) / \mathrm{I}$
adue $(40)=(1+\mathrm{i}) * \mathrm{a}(40)=1.03 * 23.11477=23.80821$
$\mathrm{v}^{\wedge} 40=0.30656$
$(\mathrm{Ia})_{(40)}=(23.80821-40 * 0.30656) / 0.03=384.86033$
(1) is $3 * 384.86033+40 * 120 * 0.30656=2626.06899$

The denominator for the bond is
$1^{2}{ }^{40} 3 * v^{\dagger}+120 v^{40}$
$=3 * \mathrm{a}(40)+120 \mathrm{v}^{40}=3 * 23.11477+120 * 0.30656=106.13151$
Hence, duration of bond is $2626.15899 / 106.13151=24.74$ half- year

$$
=12.37 \text { year }
$$

Q6)
(a) The factors are

Supply and demand
Base rate
Interest rates in other countries
Expected future inflation
Tax
Risk associated with changes in interest rate
(b) The 10-year spot rate is measured by the yield on 10-year zero coupon bond.
(c) The forward rate, $\mathrm{f}_{\mathrm{f}} \mathrm{r}$, is the annual rate of interest agreed at time 0 for an investment made at time $t>0$ for a period of $r$ years.
(1)
(d)
(i) We have:
$\left(1+\mathrm{y}_{3}\right)^{\wedge} 3^{*}\left(1+\mathrm{f}_{3}\right)^{*}\left(1+\mathrm{f}_{4,3}\right)^{\wedge} 3=\left(1+\mathrm{y}_{7}\right)^{\wedge} 7$
$\left(1+\mathrm{f}_{3}\right)=\quad(1.055)^{\wedge} 7 /\left((1.065)^{\wedge} 3^{*}(1.057)^{\wedge} 3\right)$
$\mathrm{f}_{3}=\quad=\quad 1.45468 / 1.42651-1=0.019747=1.9747 \%$
(ii) We have

$$
\begin{aligned}
& \left(1+\mathrm{y}_{4}\right)^{\wedge} 4^{*} *\left(1+\mathrm{f}_{3,4}\right)^{\wedge} 3=\left(1+\mathrm{y}_{7}\right)^{\wedge} 7 \\
& \left(1+\mathrm{y}_{4}\right)^{\wedge}=(1.055)^{\wedge}=(1 / 257)^{\wedge} 3=1.23181 \\
& \mathrm{y}_{4}=5.35
\end{aligned}
$$

Q7)
(i) Let X be the monthly instalment. Then,
$12 * X^{*} \mathrm{a}^{(12)}[15]$ at $10 \% \mathrm{pa}=600,000$

$$
\begin{aligned}
& \mathrm{a}^{(12)}[15]=\mathrm{i} / \mathrm{i}^{(12)} * \mathrm{a}[15], \mathrm{i} / \mathrm{i}^{(12)}=1.045045, \quad \mathrm{a}[12]=7.6061 \\
& \mathrm{X}=600,000 /(12 * 1.045045 * 7.6061) \\
& \quad=6290.32
\end{aligned}
$$

(ii) After 1.5 years loan outstanding is

$$
\begin{gathered}
12 * 6290.32 * \mathrm{a}^{(12)}[13.5]=12 * 6290.32 * 1.045045 * \mathrm{a}(13.5) \\
= \\
=572 * 6290.32 * 1.045045 * 7.2382 \\
=
\end{gathered}
$$

Interest component of $19^{\text {th }}$ monthly instalment $=1^{(12)} / 12$ * 570,978.24

$$
=0.095690 / 12 * 570,978.24=4553.08
$$

Capital component $=6290.32-4553.08=1737.24$
(iii)(a) Loan outstanding at the end of 5 years $=12 * 6290.32 * \mathrm{a}^{(12)}[10]$ at $10 \%$ pa interest
$=12 * 6290.32 * 1.045045 * 6.1446=484,710.68$

The revised loan instalment Y is such that
$12 * \mathrm{Y}^{*} \mathrm{a}^{(12)}[10]$ at $8 \% \mathrm{pa}=484710.68$
$\mathrm{a}^{(12)}[10]=\mathrm{i} / \mathrm{i}^{(12)} * \mathrm{a}[10], \quad \mathrm{i} / \mathrm{i}^{(12)}=1.036157 \quad \mathrm{a}[10]=6.7101$
$\mathrm{Y}=484,710.68 /(12 * 1.036157 * 6.7101)=5809.61$
(iii)(b) Present value of reduction in monthly instalment is
$12 *(6290.32-5809.61)^{*} \mathrm{a}^{(12)}$ [10] at $8 \%$ pa
$=12 * 480.71 * 1.036157 * 6.7101$
$=40,106.89$
Processing fee $=4 \% *$ of original loan $=0.04 * 600,000$

$$
=24,000
$$

Thus, profit to borrower is $40,106.89-24,000=16,106.89$
And therefore the offer is profitable to the borrower.

## Q8)

(i) Call option:

A call option gives you the right, but not the obligation, to buy a specified asset on set date in future for a specified price

## Put option:

A put option gives to the right, but not the obligation, to sell a specifed asset on set date in future foe a specified price.
(ii) The difference is between 'Right' and 'Obligation'. Selling a call means that you receive money and must sell the asset if holder of option wants to. Buying a put costs you money and gives you right to choose whether or not to sell the asset.
(iii) Let i be the real rate of interest per annum effective. Then
$600=30\left[v^{\wedge} 0.5 / 1.05^{\wedge} 0.5+v^{\wedge} 1.5^{*} 1.08 / 1.05^{\wedge} 1.5+v^{\wedge} 2.5^{*} 1.08^{\wedge} 2 / 1.05^{\wedge} 2.5---\right]$
$600=30 * v 0.5 / 1.05^{\wedge} 0.5 *\left[1+v^{*} 1.08 / 1.05+\left(v^{*} 1.08 / 1.05\right)^{\wedge} 2+\ldots ..\right]$
$600=30 * v 0.5 / 1.05^{\wedge} 0.5 /\left(1-\mathrm{v}^{*} 1.08 / 1.05\right)$
$600=29.2770 \mathrm{v}^{\wedge} 0.5+617.14286 \mathrm{v}$ eq(1)

The expected dividend yield is $60 / 600=5 \%$. The dividend growth rate is $8 \%$ pa and inflation is $5 \%$ pa. Thus, the approximate real return on equity will be $8 \%$ (= dividend yield + growth rate - inflation)

So, at $8 \%, v=0.925926$
The RHS of eq(1) is 599.60
At 7.5\%, v $=0.930233$
The RHS of eq(1) is $\quad 602.3239$
By interpolation
$\begin{array}{ll}\mathrm{v}= & (600-599.60) /(602.3239-599.60) *(0.930233-0.925926)+0.925926 \\ \mathrm{v}= & 0.926558 \\ \mathrm{i}= & 1 / 0.926558-1=7.9263 \%\end{array}$

Q9)
(i) The discounted payback period of an investment project is the first time at which net present value of the cash flows from the project is positive.
(ii) Net present value

Net present value of the cost is :

$$
\begin{aligned}
& \mathrm{PV}(\text { cost })=10+1.5\left[\mathrm{v}+1.05 \mathrm{v}^{\wedge} 2+1.05^{\wedge} 2^{*} \mathrm{v}^{\wedge} 3+1.05^{\wedge} 3 \mathrm{v}^{\wedge} 4 \ldots \ldots . .1 .05^{\wedge} 13 \mathrm{v}^{\wedge} 14\right] \\
&=10+1.5 / 1.05^{*}\left[\left(1.05 \mathrm{v}+(1.05 \mathrm{v})^{\wedge} 2+(1.05 \mathrm{v})^{\wedge} 3 \ldots \ldots . .(1.05 \mathrm{v})^{\wedge} 14\right]\right. \\
&=10+1.5 / 1.05\left[\left(\mathrm{v}^{\prime}\right)+\left(\mathrm{v}^{\wedge}\right)^{\wedge} 2 \ldots . .\left(\mathrm{v}^{\prime}\right)^{\wedge} 14\right] \text { where } \mathrm{v}^{\prime}=1.05 \mathrm{v} \\
&=10+1.5 / 1.05 \mathrm{a}^{\prime}[14]
\end{aligned}
$$

where is evaluated at rate of interest $i \prime=1.15 / 1.05-1=9.5238 \%$.
Hence
$\mathrm{a}^{\mathrm{a}}{ }_{[14]}=\left(1-\left(1.095238^{\wedge}(-14)\right) / 0.095238=7.56188\right.$
$\mathrm{PV}($ cost $) \quad=10+7.56188 * 1.5 / 1.05=20.8026$
Present value of income is:

$$
\begin{aligned}
\mathrm{PV}(\mathrm{I}) & =3.5^{*}\left[\mathrm{v}+\mathrm{v}^{\wedge} 2+\mathrm{v}^{\wedge} 3+\ldots \ldots . . \mathrm{v}^{\wedge} 15\right]+\mathrm{v} 5 * 0.50\left[\mathrm{v}+2 \mathrm{v}^{\wedge} 2+3 \mathrm{v}^{\wedge} 3 \ldots . .+10 \mathrm{v}^{\wedge} 10\right] \\
& =3.5^{*} \mathrm{a}[15]+0.50 * \mathrm{v}^{\wedge} 5(\mathrm{Ia})[10] \text { at } 15 \% \mathrm{pa} \\
& =3.5 * 5.8474+0.50^{*} 1.15^{\wedge}(-5)^{*} 21.9982=20.4658+5.46851 \\
& =25.93430
\end{aligned}
$$

Hence, the present value of the project

$$
\begin{equation*}
=\mathrm{PV}(\mathrm{I})-\mathrm{PV}(\text { cost })=25.93430-20.8026=5.1317 \text { crore } \tag{7}
\end{equation*}
$$

(iii) Discounted Payback period

Present value of first 8 years cash flows
$\mathrm{PV}($ cost $)=10+1.5\left[\mathrm{v}+1.05 \mathrm{v}^{\wedge} 2+1.05^{\wedge} 2 \mathrm{v}^{\wedge} 3+\ldots 1.05^{\wedge} 6 \mathrm{v}^{\wedge} 7\right]$
$=10+1.5 / 1.05 \mathrm{a}^{\prime}[7]$
$=10+1.5 / 1.05^{*}\left[\left(1-\left(1.095238^{\wedge}(-7)\right) / 0.095238\right]\right.$
$=10+1.5 / 1.05 * 4.9457=17.06528$
$\mathrm{PV}(\mathrm{I})=3.5 * \mathrm{a}[8]+0.50 * \mathrm{v}^{\wedge} 5 *(\mathrm{Ia})[3] @ 15 \%$
$=\quad 3.5 * 4.48732+0.50 * 1.15 *(-5) * 4.43440$
$=\quad 15.70562+1.08245=16.78809$
And
$\mathrm{NPV}=\mathrm{PV}(\mathrm{I})-\mathrm{PV}($ cost $)=16.78809-17.06528<0$

Present value of first 9 years cash flows

$$
\begin{aligned}
\mathrm{PV}(\text { cost }) \quad & =10+1.5\left[\mathrm{v}+1.05 \mathrm{v}^{\wedge} 2+1.05^{\wedge} 2 \mathrm{v}^{\wedge} 3+\ldots 1.05^{\wedge} 7 \mathrm{v}^{\wedge} 8\right] \\
& =10+1.5 / 1.05 \mathrm{a}^{\wedge}[8] \\
& =10+1.5 / 1.05^{*}\left[\left(1-\left(1.095238^{\wedge}(-8)\right) / 0.095238\right]\right. \\
& =10+1.5 / 1.05^{*} 5.42868=17.75526 \\
\mathrm{PV}(\mathrm{I})= & 3.5^{*} \mathrm{a}[9]+0.50^{*} \mathrm{v}^{\wedge} 5^{*}(\mathrm{Ia})[4] @ 15 \% \\
= & 3.5^{*} 4.77158+0.50^{*} 1.15^{*}(-5)^{*} 6.641414 \\
= & 16.70053+1.650978=18.35152
\end{aligned}
$$

And
$\mathrm{NPV}=\mathrm{PV}(\mathrm{I})-\mathrm{PV}($ cost $)=18.35152-17.75526>0$

Therefore, discounted payback period is 9 years.

Q10)
(i) Let the accumulation of 1unit over 10 years period $=\mathrm{S}_{10}$
$\mathrm{E}\left(\mathrm{S}_{10}\right)=\mathrm{E}\left[\left(1+\mathrm{i}_{1}\right)\left(1+\mathrm{i}_{2}\right)\left(1+\mathrm{i}_{3}\right) \ldots \ldots . . \quad\left(1+\mathrm{i}_{9}\right)\left(1+\mathrm{i}_{10}\right)\right]$
Since $i_{t}$ 's are independent, this gives

$$
\begin{aligned}
\mathrm{E}\left(\mathrm{~S}_{10}\right) & =\mathrm{E}\left(1+\mathrm{i}_{1}\right) \mathrm{E}(1+\mathrm{i}) \mathrm{E}\left(1+\mathrm{i}_{3}\right) \ldots \ldots . & & \mathrm{E}\left(1+\mathrm{i}_{9}\right) \mathrm{E}\left(1+\mathrm{i}_{10}\right) \\
& =1.08 * 1.08 * 1.08 \ldots \ldots \ldots . & & 1.08 * 1.08 \\
& =(1.08)^{\wedge} 10=2.158925 & &
\end{aligned}
$$

$\mathrm{E}\left(\mathrm{S}_{10}{ }^{\wedge 2}\right)=\mathrm{E}\left[\left(1+\mathrm{i}_{1}\right)^{\wedge} 2\left(1+\mathrm{i}_{2}\right)^{\wedge} 2\left(1+\mathrm{i}_{3}\right)^{\wedge} 2 \ldots \ldots . . \quad\left(1+\mathrm{i}_{9}\right)^{\wedge} 2\left(1+\mathrm{i}_{10}\right)^{\wedge} 2\right]$
Since $\mathrm{i}_{\mathrm{t}}$ 's are independent, this gives
$\mathrm{E}\left(\mathrm{S}_{10}{ }^{\wedge}\right)=\mathrm{E}\left(1+\mathrm{i}_{1}\right)^{\wedge} 2 \mathrm{E}(1+\mathfrak{i})^{\wedge} 2 \ldots \ldots . \quad \mathrm{E}\left(1+\mathrm{i}_{9}\right)^{\wedge} 2 \mathrm{E}\left(1+\mathrm{i}_{10}\right)^{\wedge} 2$

```
\(\mathrm{E}\left(1+\mathrm{i}_{1}\right)^{\wedge} 2=\mathrm{E}\left(1+2 \mathrm{i}+\mathrm{i}^{\wedge} 2\right) \quad=\mathrm{E}(1)+2 \mathrm{E}(\mathrm{i})+\mathrm{E}\left(\mathrm{i}^{\wedge} 2\right)\)
            \(=1+2 \mathrm{E}(\mathrm{i})+?^{\wedge} 2+[\mathrm{E}(\mathrm{i})]^{\wedge} 2=1+2^{*} .08+0.11^{\wedge} 2+0.08^{\wedge} 2\)
            \(=1.1785\)
\(\mathrm{E}\left(\mathrm{S}_{10}{ }^{\wedge}{ }^{2}\right)=1.1785^{\wedge} 10\)
\(\operatorname{Var}\left(\mathrm{S}_{10}\right)=\mathrm{E}\left(\mathrm{S}_{10}{ }^{\wedge}\right)-\left[\mathrm{E}\left(\mathrm{S}_{10}\right)\right]^{\wedge} 2=1.1785^{\wedge} 10-1.08^{\wedge} 20\)
        \(=0.506725\)
\(\mathrm{S} . \mathrm{D}\left(\mathrm{S}_{10}\right)=0.711846\)
```

Thus, accumulation of 20,000 will have
Expected value of $20,000 * 2.158925=43178.5$
With standard deviation of $(20000 * 0.711846=14236.92$
(ii) $\quad(1+\dot{i}) ? \mathrm{LN}\left(?, ?^{2}\right)$
$\ln \left(1+i_{i}\right) ? N\left(?, ?^{2}\right)$
$\ln ((1+\mathbf{i}))^{\wedge} 10=\ln (1+\mathbf{i}) \ln \left(1+\frac{i}{i}\right) \ldots \ldots . \ln (1+\mathfrak{i}) ? N\left(10 ?, 10 ?^{2}\right)$
Thus,
$(1+\mathrm{i})^{\wedge} 10 ? \mathrm{LN}\left(10 ?, 10 ?^{2}\right)$
$\mathrm{E}\left(1+\mathrm{i}_{\mathrm{i}}\right)=\exp \left[?+?^{2} / 2\right]=1.08$
$\operatorname{Var}(1+\mathfrak{i})=\exp \left(2 ?+?^{2}\right)\left[\exp \left(?^{2}\right)-1\right]=0.11^{\wedge} 2$
$1.08^{\wedge} 2 *\left[\exp \left(?^{2}\right)-1\right]=0.11^{\wedge} 2$
$\exp \left(?^{2}\right)=0.11^{\wedge} 2 / 1.08^{\wedge} 2+1=1.0103738$
$?^{2}=0.01032036$
$\exp \left[?+?^{2} / 2\right]=1.08$
$\exp [?+0.0103203 / 2]=1.08$
? $=\ln 1.08-0.01032036 / 2$
? $=0.0718$
$\mathrm{S}_{10} \quad$ ? LN $\left(10 ?, 10 ?^{2}\right)$
$\operatorname{lnS}_{10} \quad$ ? $\mathrm{N}\left(10 ?, 10 ?^{2}\right)$
$\ln \mathrm{S}_{10} \quad ? \mathrm{~N}(0.718,0.1032)$
We require probability that $\mathrm{S}_{10}<60 \% * 2.158925$
i.e. $\mathrm{S}_{10}<1.2954$

Probability that $\ln \mathrm{S}_{10}<\ln (1.2954)$
Probability that $\left(\operatorname{lnS}_{10}-0.718\right) / ? 0.1032<(\ln (1.2954)-0.718) / ? 0.1032$
$\operatorname{Pr}(\mathrm{Z}<-1.42937)$ where Z ? $\mathrm{N}(0,1)=0.0764$
(iii) Let X be the sum invested such that
$\operatorname{Pr}\left(\mathrm{XS}_{10}>=1.50 * 20000\right)=0.95$
$\operatorname{Pr}\left(\mathrm{S}_{10}>=30000 / \mathrm{X}\right)=0.95$
$\operatorname{Pr}\left(\ln \mathrm{S}_{10}>=\ln 30000 / \mathrm{X}\right)=0.95$
$\operatorname{Pr}(\mathrm{Z}>=(\ln 30000 / \mathrm{X}-0.718) /$ ? 0.1032$)$ where Z ? $\mathrm{N}(0,1)=0.95$

Since we require $95 \%$ of populations to be more than value of z , we must have a negative z value $(\operatorname{In} 30000 / \mathrm{X}-0.718) /$ ? $0.1032=-1.6449$
$\ln 30000 / \mathrm{X}=0.189579$
$30000 / \mathrm{X}=1.20874$
$\mathrm{X}=24819.23$

