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INDICATIVE SOLUTION

Introduction

The indicative solution has been written by the Examiners with the aim of helping candidates.
The solutions given are only indicative. It is realized that there could be other points as valid
answers and examiner have given credit for any alternative approach or interpretation which

they consider to be reasonable.
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1.
o Develop a well defined set of objectives that need to be met by the
modeling process
0 Plan the modeling process and how the model will be validated
0 Collect and analyse the necessary data for the model
o Define the model by capturing the essence of the real world system
o Involve the experts on the real world system so as to get feedback on
the validity of the conceptual model
0 Decide on the type of model to be used for implementation of the model
0 Write the computer program for the model
o Debug the program to make sure it performs the intended operations in the
model
0 Test the reasonableness of the output from the model
0 Review and carefully consider the appropriateness of the model in the light
of small changes in input parameters
0 Analyse the output from the model
o Communicate and document the results and the model
[3]
2.

(@) White noise is a stochastic process that consists of a set of independent and
identically distributed random variables. The random variables can be either
discrete or continuous and the time set can be either discrete or continuous.

(b) A Poisson process with rate A is a continuous-time integer-valued process N ¢, t>0
with the following properties:

(i) N =0
(ii) N  has independent increments
(iii) N ¢ has Poisson distributed stationary increments:
_ n o—A(t-s)
PIN, — N, =n] = A S)]I ¢ , s<t, n=0,1,....
n!
[3]
3.

(i) 6, deaths x nearest b’day during period of investigation (POI)

Rate interval is life year (x - ¥2, X + ¥2)

(ii) Define PX' (t) census at time t after start of POI of these aged x nearest at time t. So

Central Eto R, E;, corresponding to &, , is given by

EC

t=3
= j P, (t).dt
t=0

I

P, (%)+ P, (1§)+P; (2%)
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If P, (t) is linear in t over (0,1) (1,2) and (2,3).
Now the censuses given are Px(t) where x is x last birthday at time t. If
birthdays are uniformly distributed over CY then

P(t)=% P, +% P!

X

So

. 1 1 1 1 1 1
Ex =% [ Px (E) + Px (15) + Px (2 E) + Px—l (E) + PX—l (15) + PX—l (25) ]

0
(i) andm? = - estimates m ,,,, assuming date of births are uniformly distributed over

X

calendar years.

[7]

4.

(a)At each age there will be a different sample size/exposed to risk, Ex . This will usually be
largest at ages where many term polices are sold e.g.25 to 50 and smaller at other ages.
The estimation procedure should pay more attention to ages where there are lots of data.
These ages should have a greater influence on the choice of ¢ and A than other ages.

So weights bx oc EX

Suitable choice is wx = [var(q, )]

E

X

" g,-q,)

E
~ X asqg, =107
0y

2
X X

These weights can be estimated by —- =

0

X X

(b) The graduated rates qf are a linear function of the rates in the standard table q;. The

standard table rates will already be smooth. Further suitability of the formula can be
investigated by applying the statistical tests.

(c)Smoothness is based on the size of the third differences of the graduated rates A® qf ,

which because the relationship is linear will be equal to b A® q,- A g, will already be
acceptably small because the standard table rates will already be smooth.

[7]
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5.
Choose a period of investigation from time 0 to time T, where T is a whole number of
calendar years (say about 4) and 0 corresponds to the start of a calendar year.

x = age next birthday on policy anniversary before death

Let ZSX be total deaths labelled x in all calendar years during period of
investigation.

Let P, (t) be a census at time t after start of period of investigation of those lives having age
label x at time t.

Then,
EC = [ P (t)dt
x = .[t:o XA

=T-1

=1 P (0)+ tz P (t)+1/2P (T)

Assuming P, (t) varies linearly with t over each calendar year.

Then

Y

Uy = = estimates ,

X
Policy year rate interval, average x - %2 at start assuming birthdays are uniformly distributed
over the policy year, and that the force of mortality is constant over each year of age.

[7]
6)

_ Plx<X <x+h/X >x]
(@) Hazard Rate, h(x) = rI]_Ign -

Integrated Hazard H(x) = qujoxh(u).d (u) ==In(S(x))

=-InP[X> X]

where S(X) = P[X> X]
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H(x)= ujox aAu®t.du
= g/’iu “
(04 u=0
= AX* >0
(C) h(X) = (ao + Zl)(ﬂl z, + 12 Zz)xao-%—alzrl
h(X|Z) _ (ao +alzl)(/llzl_’_/lzZZ)XQ’0+0!12171
h(X‘Z*) (0(0 + alZ*l)(ﬂlz*l +ﬂzz*2)xao+alzl -1

which is not in general independent of X, so hazards are not proportional.

h(x|z %t
If o =0 then D % + (s + 42X
h(x‘z ) o+ (A4 +4,2,)X"
— 2’121+2‘222
A2y + a2,

which is independent of X, so the hazards are proportional

[8]

7)
Group 1
ay RN g, ) F(t) 9, VIF(t)]
iC ) 1-4
n; . ny(n; —d;)
1 143 1 19| 0.0526 0.9474 | 0.0526 0.0029 0.0026
2 165 1 18 | 0.0556 0.9444 | 0.1053 0.0033 0.0050
3 188 2 17| 0.1176 0.8824 | 0.2105 0.0078 0.0087
4 190 1 15| 0.0667 0.9333 | 0.2632 0.0048 0.0102
5 192 1 14| 0.0714 0.9286 | 0.3158 0.0055 0.0114
6 206 1 13| 0.0769 0.9231 | 0.3684 0.0064 0.0122
7 208 1 12| 0.0833 0.9167 | 0.4211 0.0076 0.0128
8 212 1 11| 0.0909 0.9091 | 0.4737 0.0091 0.0131
9 216 1 10 | 0.1000 0.9000 | 0.5263 0.0111 0.0131
10 220 1 8| 0.1250 0.8750 | 0.5855 0.0179 0.0131
11 227 1 7| 0.1429 0.8571 | 0.6447 0.0238 0.0126
12 230 1 6| 0.1667 0.8333 | 0.7039 0.0333 0.0117
13 244 1 5| 0.2000 0.8000 | 0.7632 0.0500 0.0103
14 246 1 3| 0.3333 0.6667 | 0.8421 0.1667 0.0087
15 265 1 2| 0.5000 0.5000 | 0.9211 0.5000 0.0053
16 303 1 1| 1.0000 0.0000 | 1.0000 0.0000
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Group 2
] t, d, n, A dj \ ” dj VIFO)
iE—=) 12, t ———— | VIF(t
n, j n;(n;-d;)
142 1 22
1 0.04545 0.95455 | 0.04545 0.0022 0.00197
157 1 21
2 0.04762 0.95238 | 0.09091 0.0024 0.00376
163 1 20
3 0.05000 0.95000 | 0.13636 0.0026 0.00535
198 1 19
4 0.05263 0.94737 | 0.18182 0.0029 0.00676
205 1 17
5 0.05882 0.94118 | 0.22995 0.0037 0.00817
232 3 16
6 0.18750 0.81250 | 0.37433 0.0144 0.01104
233 4 13
7 0.30769 0.69231 | 0.56684 0.0342 0.01171
239 1 9
8 0.11111 0.88889 | 0.61497 0.0139 0.01131
240 1 8
9 0.12500 0.87500 | 0.66310 0.0179 0.01068
261 1 7
10 0.14286 0.85714 | 0.71123 0.0238 0.00984
280 2 6
11 0.33333 0.66667 | 0.80749 0.0833 0.00746
295 2 4
12 0.50000 0.50000 | 0.90374 0.2500 0.00418
323 1 2
13 0.50000 0.50000 | 0.95187 0.5000 0.00220
Comments

Though there is a slight indication from the data that the group 2 has more impact from a
particular type of cancer after exposure to a particular carcinogen, however from the
variances, this is not statistically significant.

[9]

(i) The three assumptions underlying the simple two-state model are:

(@) The probabilities that a life at any given age will be found in either state at any
subsequent age depend only on the ages involved and on the state currently
occupied.

(b) dt qx+t = qu+tdt + O(dt) (tZO)

(c) For each integer x, u,,, takes a constant value p for O<t<1
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(if)

(b)

(€)

(iff)

Exponential distribution in each case with oin Hand pinS.

The time spent in state H before the next visit to S has mean o .

Therefore a reasonable estimate for o is the reciprocal of the mean

length of each visit: o= (Number of transitions from H to S)/(Total time
spent in state H up until the last transition from H to S), although it
would be equally valid to use the Maximum Likelihood Estimator, which
is (Number of transitions from H to S)/(Total time spent in state H).

Similarly for p

Testing whether the successive holding times are independent
exponential variables would be best, and any procedure which does test

this is acceptable. Something like using the y”goodness-of-fit test on

the even-numbered holding times, then again on the odd-numbered

ones, springs to mind, but there may be other, equally reasonable,
answers.

(a) For a time-inhomogeneous model the transition rates o and p are
functions of t.

It is certainly possible to improve the fit by using a time-
inhomogeneous model in this instance.

(b) If the age profile is represented by a density function f(a); then the
overall average rate at which a healthy employee falls sick is

o= J' f(a)o(a)da, roughly constant for all t. The same of course

applies to the overall average rate of recovery.
[11]
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9)

Age | Initial Actual | Graduate | Expect | Standard Standardiz 2°

exposed | noof |d ed deviation ed
torisk | deaths | mortality | deaths deviation
rates
X | E, 0, ; E,q E q'«(1—q’)| 3)-0)
q 4 | VE(O x(@d-ay) /(6)

1

12 | 601250 | 161 0.00028 | 168.35 12.9732 -0.566554 | 0.320984
2

13 | 647273 | 205 0.00033 | 213.60 14.6126 -0.588531 | 0.346369
3

14 | 702000 | 260 0.00038 | 266.76 16.3297 -0.41397 | 0.171371
4

15 | 765000 | 344 0.00043 | 328.95 18.1331 0.8299749 | 0.688858
5

16 | 836458 | 418 0.00048 | 401.50 20.0327 0.8236552 | 0.678408
6

17 | 916642 | 506 0.00053 | 485.82 22.0355 0.9157957 | 0.838682
7

18 | 760763 | 463 0.00059 | 448.85 21.1798 0.6680885 | 0.446342
8

19 | 602909 | 388 0.00066 | 397.92 19.9413 -0.497459 | 0.247465
9

20 | 446635 | 318 0.00074 | 330.51 18.1732 -0.688376 | 0.473862
10

21 | 367289 | 296 0.00083 | 304.85 17.4527 -0.507085 | 0.257135
11

22 | 290086 | 251 0.00093 | 269.78 16.4173 -1.143912 | 1.308535

3,616.
3610 8 -1.1684 | 5.7780

}(2 test :

The resulting 7 value is 5.78, far below 16.92, the upper 5% point of ;(92

2 - well below even the mean, 9. We should use at most (11-2=) 9 degrees of freedom
because of the two parameters estimated.

However, reducing the degrees of freedom even as low as 2 (upper 5% point = 5.991) would
still yield a non-significant result.

This test certainly does not reveal any departure from the null hypothesis.
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Individual standardized deviations:

<-2 0 expected 2%
-2to -1 1 expected 14%
-1to 0 6 expected 34%

Oto1l 4 expected 34%
>1 0 expected 16%

i.e. concentrated somewhat closer to zero than expected on the basis of a
Standard normal distribution. But not unsatisfactory.

Cumulative deviations (over the whole age range):

Z(ex - Equ) = -6.89 Z Ex Pxdx = Z Equ= 3616.8

-6.8 is (in modulus) much less than 2(3616.8)"? ~ 120.

Clearly this is not significant, (but test is not rigorous because the process

of graduation constrains cumulative deviations to be close to zero).

Signs test:
There are 4 plus signs out of 11. If Binomial (11, %2),

P(N <4)>P(N =4)=0.1611 This is clearly not significant.

Grouping of signs

There are n1 = 4 positive deviations and n2 = 7negative deviations. There is only one group of
positive deviations.

Under HO the probability of one group of positive deviations is %l )
4

le 8/330 = 0.024. This is in fact the p-value, the probability of one or fewer
groups of positive deviation signs. This is significant at 5% level.

Serial correlation test (as an alternative to grouping of signs):

Since r;+/11 is approximately standard normal, and r;+/11=2.10 > 1.65, there
Is significant positive serial correlation (at the 5% level).

Comment: Fidelity to data appears to be very satisfactory apart from
the excessive clumping of the deviations of the same sign. The graduated
Rates are lower than the crude rates in the middle of the age range, and
Higher at either end. This suggests that, over the age range 12-22, the
Standard table used differs slightly in shape from the experience
[12]
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10.
(i) The Chapman - Kolmogrov equations are

Pi(s,t) = D_ P, (s,u)P, (u,t)

kes

To obtain the forward equations we differentiate with respect to t and evaluate at
u=t;

kes

0 0
el (s,t) = Z|:Pik (s, U)(g Py (U,t)ﬂuzt =D P (s, (1)

Similarly the backward equations are obtained by differentiating with respect to s
and setting u=s ;

0 0
g Pij (s,t) = Z[(g P (s, u)jpkj (u,t):|u=s = _z Hig (s) ij (s,t)

kes kes

We now need to explain where the minus sign in the RHS comes from.
The definition of the transition rates is such that ;

P, (s,s+h) =36, +hg (s)+o(h)

Or equivalently;

P, (s—h,s) =06, +hy, (s—h)+o(h)
Rearranging this gives:

Py (s —h,s) — o, —o(h)
h

wy (s—h) =

Now taking the limit of both sides as h->0 and nothing that Py(s,s)=%, we get

™ (S) =—lim I:)ik (S B h! S) B F)ik (57 S) B O(h) _ _|:£ Pik (Svt)j|
h—0 —h oS s

(ii) Pyo(t) = pPy, (t) — AP, o (t) or a more general form such as
Pd,o t)= Z PO,k (t)Gk,o

(iii)Since Pg 1(t) = 1 - Pgo(t),
We have P;,(t) = u(1-P,,(t)) — AP, (t) . Any solution method will do,

e.g. il:e(/1+#)t POYO (t)]: Iue(/1+#)1 solved by POYO (t) — H + Cef(iﬁu)t
dt A+u

with C being determined by the fact that Pg o(0)=1.
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t t t
(iv) EqO, = Eq [ 1,ds = [Egl,ds = [Py, (s)ds
0 0 0

S S S S
A+pu (A+u)

(v) Since the process must be in state 0 or state 1 at all times, the solution is just

t-E,O, = Ay 4 (1—e ¢ty

A+ (A+p)?

(vi) (@) Assuming a member who is initially healthy, expected outgoings (including
expenses) by time t and expected income by time t, are respectively

A A
+ t— 1— e*(ﬂ-"’,ll)t
4 ﬁ(iﬂt (/1+/J)2( )J
And o —Ht+ 4 ~(L—e ¥
A+u (A+p)

In the long run then as t->=, we require au=BA+/(A+u) to break even

(b) The assumptions required are that the rate of becoming ill and rate of recovery
from illness are constant

(c)This will certainly not be true of any individual member but, if membership is
large and the age and health profiles of the members are constant by virtue of a
constant influx of new members, it may be a reasonable approximation.
[16]
11).

(i) There is an explicit dependence on the past behavior of Y;, j<n in the probability
distribution of Y,.1; hence the Markov property does not hold.

On the other hand
P[Xn+1=j/x1=i1 ) X2=i2, ....... Xn.1=in.1 ) Xn=in]

= P[Yn+1=j'i/ Y1=i1, Y2=iz'i1, ....... Yn.1=in.1'in.2, Yn=in'in.1]

[peif(j-i)=0
1- pe it (j-i) =1

This is independent of iy,i;......in-1.
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(ii) Transition graph

1-p 1-pe™ 1-pe??
OO -
P pe™? pe?*

Transition matrix:

p 1-p
pe* 1-pe™ 0

pe?* 1-pe

24

(iii)
(a) Chain is time-homogenous since transition probabilities calculated in (i) do not
depend on time n.

(b) It is not irreducible since the number of accidents can never go down

(c) There are no recurrent states, hence there can be no stationary distribution.
Alternatively, a stationary distribution, m, if it exists, must obey

Mop = Mo

Mou-p)+ Mipe™= 1,
My pe™)+ Mype =,

Since p<1 we have lMy=0 and MN;=0 etc. Hence no stationary probability distribution
exists.

(iv)  No new accident;
(pe—jﬂ,)n — pne—njﬂ

v) (a) Maximum likelihood would be very easy in this case; choose A and p to
maximize
N{(pe™)"™(1- pe™i 3.
(b) Change the model to:
P[Yn1=0/ Yi=y1, Y2=Y2, weuee.. Yo=ya] = pettmn
Then test the hypothesis that A(x,n) =A(x) for all n.
[17]
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