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Q.2 a)    
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by definition of uniform distribution of deaths. [1] 
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 b)  
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  (ii) Constant force of mortality: 
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Q.3   Poisson distribution of claims 

Mean = nq      and   std deviation = nq  
Thus 5% confidence interval will be equivalent to 5% of the likely death claim or 
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Q.4     
   The likelihood for each life is  
 a)  1 2 3 4 5 6 7 
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 b)  The likelihood for each life is proportional to, assuming constant force of mortality 
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   Thus the total likelihood is the product 
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Q.5     



  (i) Partial likelihood is  
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where k is the number of deaths assumed to occur at distinct times 

jt  is the tth lifetime 

jR(t )  denotes the set of lives at risk at time jt . [1] 
  (ii) The partial likelihood is  
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setting this equal to zero and rearranging  (y = eβ ) 
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  (iv) We need to use Breslow approximation to get the new partial likelihood which is 
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Q.6 a)    
  (i) Policy year rate interval. [1] 
  (ii) Assume birthdays uniformly distributed over the policy year. 

Lives will be thus on the average 
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  (iii) The assumption of uniform birthdays over the policy year now no longer holds. 
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  (i) 
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  (ii) 

For company I, the above observed rates apply to age x - x x

1
 for q  and x for 

2
µ . No 

assumption is required. 

For company II, the observed rates apply to age x x x

1
for q  and x+  for 

2
µ . 

Assumption: Birthdays are uniformly distributed over the calendar year. [2] 
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