Actuarial Society of India

EXAMINATIONS

June 2005

CT4 (104) - Models
Total Marks - 50

Indicative Solution

Q. 1
$\mu_{\mathrm{x}+\mathrm{t}}=\lim _{h \rightarrow 0} \frac{1}{\mathrm{~h}} \times \mathrm{P}\left[\mathrm{T}_{\mathrm{x}} \leq \mathrm{t}+\mathrm{h} \mid \mathrm{T}_{\mathrm{x}}>\mathrm{t}\right]$
[1]
(ii) $\quad f_{x}(t)=\frac{d}{d t} F_{x}(t)$
$=\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{P}\left[\mathrm{T}_{x} \leq \mathrm{t}\right]$
$=\lim _{h \rightarrow 0} \frac{1}{\mathrm{~h}} \times\left\{\mathrm{P}\left[\mathrm{T}_{\mathrm{x}} \leq \mathrm{t}+\mathrm{h}\right]-\mathrm{P}\left[\mathrm{T}_{\mathrm{x}} \leq \mathrm{t}\right]\right\}$
[1]
Q. 2 a)
(i) $\quad f_{\mathrm{x}}(t)=\frac{d}{d t} \mathrm{~F}_{\mathrm{x}}(t)=\frac{d}{d t}, q_{x}=\frac{d}{d t} t \cdot q_{x}=q_{x}$
$=\mu_{x+t}{ }_{t} p_{x}$
Thus
$\mu_{x+t}=\frac{q_{x}}{{ }_{t} p_{x}}=\frac{q_{x}}{1-t \cdot q_{x}}$
by definition of uniform distribution of deaths.
[1]
(ii) ${ }_{t} p_{x}={ }_{s} p_{x \cdot t-s} p_{x+s}$

Thus

$$
\begin{aligned}
& { }_{t-s} p_{x+s}=\frac{{ }_{t} p_{x}}{{ }_{s} p_{x}} \\
& { }_{t-s} q_{x+s}=1-{ }_{t-s} p_{x+s}=1-\frac{{ }_{t} p_{x}}{{ }_{s} p_{x}}=\frac{{ }_{s} p_{x}-{ }_{t} p_{x}}{{ }_{s} p_{x}} \\
& =\frac{1-s q_{x}-1+t q_{x}}{1-s q_{x}}=\frac{(t-s) q_{x}}{1-s q_{x}}
\end{aligned}
$$

b) $\quad \mathrm{p}_{56}=0.990581 \quad \mathrm{p}_{57}=0.989503$ and $\mathrm{p}_{58}=0.988314$
(i) udd: ${ }_{2} \mathrm{p}_{56.75}={ }_{0.25} \mathrm{p}_{56.75} \times \mathrm{p}_{57} \times{ }_{0.75} \mathrm{p}_{58}$

$$
\begin{aligned}
& =\frac{\mathrm{p}_{56}}{1-{ }_{0.75} \mathrm{q}_{56}} \times\left(1-q_{57}\right) \times\left(1-0.75 * q_{58}\right) \\
& =\frac{0.990581}{1-0.75 \times 0.009419} \times(0.989503) \times(1-0.75 \times 0.011686) \\
& =0.9785044
\end{aligned}
$$

(ii) Constant force of mortality:
$\mu=-\log _{e} p_{x}=-\log _{e}\left(1-q_{x}\right)$
Thus ${ }_{2} p_{56.75}={ }_{0.25} p_{56.75} \times p_{57} \times{ }_{0.75} p_{58}$
$=e^{-0.25 \times 0.009464} \times 0.989503 \times e^{-0.75 \times 0.011755}$
$=0.9785$
Q. 3

Poisson distribution of claims
Mean $=n q \quad$ and std deviation $=\sqrt{n q}$
Thus 5\% confidence interval will be equivalent to 5% of the likely death claim or $1.96 \times \sqrt{\mathrm{nq}}=0.05 \times \mathrm{nq}$
or $\mathrm{nq}=\left(\frac{1.96}{0.05}\right)^{2}$
or $\mathrm{n}=\left(\frac{1.96}{0.05}\right)^{2} * \frac{1}{0.002}$
$=768320$

Q. 4

The likelihood for each life is
a)

1	2	3	4	5	6	7
p_{40}	${ }_{0.3} \mathrm{p}_{40.4}$	${ }_{0.6} q_{40.3}$	${ }_{0.9} q_{40}$	q_{40}	${ }_{0.5} q_{40.5}$	${ }_{0.4} \mathrm{p}_{40}$

The total likelihood is the product

$$
\begin{align*}
& \left(1-q_{40}\right)\left(1-{ }_{0.3} q_{40.4}\right)\left({ }_{0.6} q_{40.3}\right)\left({ }_{0.9} q_{40}\right)\left(q_{40}\right)\left({ }_{0.5} q_{40.5}\right)\left(1-{ }_{0.4} q_{40}\right) \\
& =\left(1-q_{40}\right) \times\left[1-\frac{0.3 q_{40}}{1-0.4 q_{40}}\right] \times\left[\frac{0.6 q_{40}}{1-0.3 q_{40}}\right] \times 0.9 q_{40} \times q_{40} \times\left[\frac{0.5 q_{40}}{1-0.5 q_{40}}\right] \times\left[1-0.4 q_{40}\right] \tag{2}\\
& =\frac{\left(1-q_{40}\right)\left(1-0.7 q_{40}\right)\left(1-0.4 q_{40}\right) \times 0.27 q_{40}^{4}}{\left(1-0.4 q_{40}\right)\left(1-0.3 q_{40}\right)\left(1-0.5 q_{40}\right)}=\frac{\left(1-q_{40}\right)\left(1-0.7 q_{40}\right) \times 0.27 q_{40}^{4}}{\left(1-0.3 q_{40}\right)\left(1-0.5 q_{40}\right)}
\end{align*}
$$

b) The likelihood for each life is proportional to, assuming constant force of mortality μ_{40}^{\prime}

1	2	3	4	5	6	7
$e^{-\mu_{40}^{\prime}}$	$e^{-0.3 \mu_{40}^{\prime}}$	$e^{-0.4 \mu_{40}^{\prime}} \mu_{40}^{\prime}$	$e^{-0.6 \mu_{40}^{\prime}} \mu_{40}^{\prime}$	$e^{-0.8 \mu_{40}^{\prime}} \mu_{40}^{\prime}$	$e^{-0.4 \mu_{40}^{\prime}} \mu_{40}^{\prime}$	$e^{-0.4 \mu_{40}^{\prime}}$

Thus the total likelihood is the product
$\mathrm{L} \propto \mathrm{e}^{-3.9 \mu^{\prime}{ }_{40}}\left(\mu^{\prime}{ }_{40}\right)^{4}$

Differentiating

$$
\frac{\partial \mathrm{L}}{\partial \mu^{\prime}{ }_{40}}=-3.9\left(\mu_{40}^{\prime}\right)^{4} \mathrm{e}^{-3.9 \mu_{40}^{\prime}}+\mathrm{e}^{-3.9 \mu^{\prime}{ }_{40}} 4 \mu_{40}^{\mathrm{B}}
$$

Equating to zero
$-3.9 \mu^{\prime}{ }_{40}+4=0$
or
$\mu^{\prime}{ }_{40}=1.0256$
(i) Partial likelihood is
$L(\beta)=\prod_{j=1}^{k} \frac{\exp \left(\beta \mathrm{x}_{\mathrm{j}}^{\mathrm{T}}\right)}{\sum_{\mathrm{i} \in \mathrm{R}(\mathrm{f})} \exp \left(\beta \mathrm{x}_{\mathrm{i}}{ }^{\mathrm{T}}\right)}$
where k is the number of deaths assumed to occur at distinct times
t_{j} is the $\mathrm{t}^{\text {th }}$ lifetime
$R\left(t_{j}\right)$ denotes the set of lives at risk at time t_{j}.
(ii) The partial likelihood is
$\frac{e^{\beta}}{7+7 e^{\beta}} \times \frac{e^{\beta}}{6+6 e^{\beta}} \times \frac{1}{6+3 e^{\beta}} \times \frac{1}{4+2 e^{\beta}} \times \frac{e^{\beta}}{2+2 e^{\beta}} \times \frac{1}{1+e^{\beta}}$
$=\frac{\mathrm{e}^{3 \beta}}{504\left(1+\mathrm{e}^{\beta}\right)^{4}\left(2+\mathrm{e}^{\beta}\right)^{2}}$
(iii)
$\mathrm{L}=\frac{\mathrm{e}^{3 \beta}}{504\left(1+\mathrm{e}^{\beta}\right)^{4}\left(2+\mathrm{e}^{\beta}\right)^{2}}$
$\log L=3 \beta-4 \log \left(1+\mathrm{e}^{\beta}\right)-2 \log \left(2+\mathrm{e}^{\beta}\right)+$ const
Differetiating with respect to β, we get
$\frac{d \log L}{d \beta}=3-\frac{4 e^{\beta}}{1+e^{\beta}}-\frac{2 e^{\beta}}{2+e^{\beta}}$
setting this equal to zero and rearranging $\left(y=e^{\beta}\right)$
$\frac{4 y}{1+y}+\frac{2 y}{2+y}=3$
or $3 y^{2}+y=6$
Thus $y=1.257$ using only + ve value
$\beta=\log y=0.2287$
(iv) We need to use Breslow approximation to get the new partial likelihood which is
$\frac{e^{\beta}}{8+8 e^{\beta}} \times \frac{e^{\beta}}{7+7 e^{\beta}} \times \frac{1}{7+3 e^{\beta}} \times \frac{1}{5+2 e^{\beta}} \times \frac{e^{\beta}}{3+2 e^{\beta}} \times \frac{1}{\left(2+e^{\beta}\right)^{2}}$
Total [14]

Q. 6 a)

(i) Policy year rate interval.
(ii) Assume birthdays uniformly distributed over the policy year.

Lives will be thus on the average $x+\frac{1}{2}$ at the start of the rate interval (for q_{x} estimate)
Thus $\mathrm{x}+\mathrm{f}=\mathrm{x}+1$, age at the middle of the rate interval (for μ_{x} estimate)
(iii) The assumption of uniform birthdays over the policy year now no longer holds. Lives are now $x+1-\frac{1}{4}=x+\frac{3}{4}$ at the start of the rate interval (q_{x} type) and $x+1 \frac{1}{4}$ at the middle of the rate interval (μ_{x} type).
b)
(i) $\quad P_{x, t}=$ number of policyholders in force at 1.1.2000+t aged x nearest birthday on previous policy anniversary.
Company I
Let $\mathrm{P}_{\mathrm{x}, \mathrm{t}}=$ number of policyholders in force at 1.1.2000+t aged x nearest birthday.
$\mathrm{E}_{\mathrm{x}}^{\mathrm{e}}=\int_{0}^{1} \mathrm{P}_{\mathrm{x}, \mathrm{t}}^{\prime} \mathrm{dt}=\frac{1}{2}\left(\mathrm{P}^{\prime}(\mathrm{x}, 0)+\mathrm{P}^{\prime}(\mathrm{x}, 1)\right)$
assuming $\mathrm{P}_{\mathrm{x}, \mathrm{t}}$ varies linearly over the calendar year
Since deaths are recorded as age nearest birthdays at death.
$\mathrm{P}^{\prime}(\mathrm{x}, \mathrm{t})=\frac{1}{2}(\mathrm{P}(x-1, t)+\mathrm{P}(x, t))$
assuming policy anniversaries are uniformly distributed over the calendar year and birthdays are uniformly distributed over the policy year.
Thus
$\mathrm{E}_{\mathrm{x}}^{e}=\frac{1}{4}[P(x-1,0)+P(x, 0)+P(x-1,1)+P(x, 1)]$

Company II

Similarly
$\mathrm{E}_{\mathrm{x}}^{e}=\int_{0}^{1} P^{\prime}(x, t) \mathrm{dt}=\frac{1}{2}\left(P^{\prime}(x, 0)+P^{\prime}(x+1,1)\right)$
where $P^{\prime}(x, t)$ is the number of policyholder in force at $1.1 .2000+\mathrm{t}$ aged x nearest birthday on 1.1.2000.
Since deaths are recorded as age nearest birthday on 1.1.2000
$P^{\prime}(x, t)=\frac{1}{2}\left(P^{\prime}(x-1, t)+P^{\prime}(x, t)\right)$ with the same assumptions as the company I.
Thus $\mathrm{E}_{\mathrm{x}}^{e}=\frac{1}{4}[P(x-1,0)+P(x, 0)+P(x, 1)+P(x+1,1)]$
(ii) For company I, the above observed rates apply to age $\mathrm{x}-\frac{1}{2}$ for q_{x} and x for μ_{x}. No assumption is required.
For company II, the observed rates apply to age x for q_{x} and $\mathrm{x}+\frac{1}{2}$ for μ_{x}.
Assumption: Birthdays are uniformly distributed over the calendar year.

