Actuarial Society of India

EXAMINATIONS

June 2005

CT3 - probability and Mathematical Statistics

Indicative Solution

Q. 1 a) Stem and leaf display of the given data
i) $4 \quad 8$
$\begin{array}{llll}5 & 0 & 1 & 7\end{array}$
$\begin{array}{llllll}6 & 1 & 3 & 6 & 6 & 7\end{array}$
$\begin{array}{lllllllll}7 & 1 & 2 & 2 & 3 & 6 & 8 & 8 & 9\end{array}$
$\begin{array}{lllllll}8 & 2 & 4 & 4 & 5 & 7 & 9 \\ 9 & 3 & 4 & 9 & & & \end{array}$
100
ii) Range $=100-48=52$

Interquartile range $=85-66=19$
(Quartiles by alternative approach accepted)
b) $\bar{x}=\frac{1104}{20}=55.2$
$s^{2}=\frac{\sum x^{2}-n \bar{x}^{2}}{n-1}$
$=\frac{61,226-20(55.2)^{2}}{19}$
$=285.2$
$s=3.874$
Interval $\bar{x} \pm s \sim(51.326,59.074)$
All the items except the following 7 fall within the interval 49505149616062
required percentage $=\frac{13}{20} \times 100=65 \%$
Q. 2 a) Statement

Proof
b) i) Since $\mathrm{P}(\mathrm{X}=2, \mathrm{Y}=3)=0 \neq P(X=2) P(Y=3) \mathrm{X}$ and Y are dependent.
ii) Adjust the cell probabilities so that
$P[X=x, Y=y]=P(X=x) P(Y=y)$
This leads to the following table

$\mathrm{V} \backslash \mathrm{U}$	1	2	3	
2	$\frac{1}{2}$	$\frac{1}{6}$	$\frac{1}{12}$	$\frac{1}{3}$
3	$\frac{1}{12}$	$\frac{1}{6}$	$\frac{1}{12}$	$\frac{1}{3}$
4	$\frac{1}{12}$	$\frac{1}{6}$	$\frac{1}{12}$	$\frac{1}{3}$
	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	1

[2]
Total [8]
Q. $3 \quad$ a) Given $\mathrm{P}(\mathrm{A})=0.2, \mathrm{P}(\mathrm{B})=0.25, \mathrm{P}(\mathrm{C})=0.4$

$$
\begin{equation*}
\mathrm{P}(\overline{\mathrm{~A}})=0.8, \mathrm{P}(\overline{\mathrm{~B}})=0.75, \mathrm{P}(\overline{\mathrm{C}})=0.6 \tag{1}
\end{equation*}
$$

$$
\begin{align*}
\text { Expected no } & =\mathrm{x}_{1} \mathrm{P}(\overline{\mathrm{~A}})+x_{2}(\bar{B})+x_{3}(\bar{C}) \\
& =10(0.8)+16(0.75)+20(0.6) \\
& =8+12+12 \\
& =32 \tag{2}
\end{align*}
$$

b) i)
$\mathbf{M}_{2}(t)=\int_{0}^{1} z e^{t z} d z+\int_{1}^{2} e^{t z}(2-z) d z$
Integrating by parts
$\int_{0}^{1} z e^{t z} d z=\left[\frac{z e^{t z}}{t}\right]_{0}^{1}-\int_{0}^{1} \frac{e^{t z}}{t} d z$
$=\frac{e^{t z}}{t}-\frac{1}{t^{2}}\left(e^{t}-1\right)$
Similarly
$\int_{1}^{2} e^{t z}(2-z) d z=-\frac{e^{t}}{t}+\frac{1}{t^{2}}\left(e^{2 t}-e^{t}\right)$
Addition gives $\mathrm{M}_{2}(t)=\frac{1}{t^{2}}\left(e^{t}-1\right)^{2}$
ii)
$\mathrm{M}_{\mathrm{X}_{1}}(\mathrm{t})=\frac{e^{t}-1}{t}$
$\mathrm{M}_{\mathrm{X}_{2}}(\mathrm{t})=\frac{e^{t}-1}{t}$
where X_{1} and X_{2} are independent uniform random variables on $(0,1)$
$M_{X_{1}+X_{2}}(t)=\left(\frac{e^{t}-1}{t}\right)^{2}$
Comment : $\mathrm{g}(\mathrm{z})$ is the pdf of the sum of two independent uniform random variables.
That is the sum of two independent uniform random variables follows triangular distribution.
Q. 4 a) Expected number of accidents in a group of 1000 polic yholders, is given by
$1000 \times \frac{1}{10000}=0.1$, which is taken as the parameter of the Poisson distribution
Let $\mathrm{p}(\mathrm{x})=\mathrm{e}^{-0.1} \frac{(0.1)^{x}}{x!} \quad \mathrm{x}=0,1,2, \ldots \ldots \ldots .$.
Required Probability $=\mathrm{P}(0)+\mathrm{P}(1)+\mathrm{P}(2)$

$$
\begin{aligned}
& =\mathrm{e}^{-0.1}\left(1+0.1+\frac{0.01}{2}\right) \\
& =0.9048(1.105)=0.9998
\end{aligned}
$$

b) Define Poisson process $\mathrm{X}(\mathrm{t})$ as a discrete process, stating all the postulates namely
i) $P[1$ occurrence in $(\mathrm{t}, \mathrm{t}+\Delta \mathrm{t})]=\lambda \Delta \mathrm{t}+0(\Delta \mathrm{t})$
ii) $P[$ no occurrence in $(\mathrm{t}, \mathrm{t}+\Delta \mathrm{t})]=1-\lambda \Delta \mathrm{t}+0(\Delta \mathrm{t})$
iii) $P[2$ or more occurrence in $(\mathrm{t}, \mathrm{t}+\Delta \mathrm{t})]=0(\Delta \mathrm{t})$
iv) $\mathrm{X}(\mathrm{t})$ is independent of the number of occurrences of the event

Let E_{i} takes placeat time t_{i} and T be the interval between the occurrence of E_{i} and E_{i+1}. Tis a cts random variable.
Now $\mathrm{P}[\mathrm{T}>\mathrm{t}]=\mathrm{P}\left[\mathrm{E}_{\mathrm{i}+1}\right.$ does not occur in $\left.\left(\mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}+t\right)\right]$
$=\mathrm{P}[$ no occurrence in the interval of length t$]$ $=\mathrm{P}[\mathrm{X}(\mathrm{t})=0]=\mathrm{e}^{-\lambda t}$
$\mathrm{F}(\mathrm{t})=\mathrm{P}(\mathrm{T}<\mathrm{t})=1-\mathrm{e}^{-\lambda t}$ and hence
$\mathrm{f}(\mathrm{t})=\mathrm{F}^{\prime}(\mathrm{t})=\lambda \mathrm{e}^{-\lambda t} \quad(\mathrm{t} \geq 0)$
which is an exponential distribution
c)

$$
\begin{aligned}
& P(X=r)=P(Y=r)=p q^{r-1}, \quad \mathrm{r}=1,2, \ldots \ldots \ldots . . \\
& P[X=r \mid X+Y=k]=\frac{P[X=r, X+Y=k]}{P[X+Y=k]} \\
& =\frac{P[X=r] \cdot P[Y=k-r]}{\sum P[X=r] \cdot P[Y=k-r]} \\
& =\frac{p q^{r-1} \cdot p q^{k-r-1}}{\sum_{r=1}^{k-1} p q^{r-1} \cdot p q^{k-r-1}} \\
& =\frac{q^{k-2}}{\sum_{r=1}^{k-1} q^{k-2}}=\frac{1}{k-1} \\
& r=1,2, \ldots \ldots . .(k-1)
\end{aligned}
$$

which is a discrete uniform distribution.
Q. 5 a) Statement of central limit theorem for i.c.r.v.'s

Let Z be standard Normal r.v.

$$
\begin{aligned}
& \bar{X} \sim N(167,4.5) \\
& P[163<\bar{X}<171]=P\left[\frac{163-167}{4.5}<\frac{\bar{X}-167}{4.5}<\frac{171-167}{4.5}\right] \\
& =P\left[-0.8889<\frac{\bar{X}-\mu}{4.5}<0.8889\right] \\
& \simeq 2 P[Z<0.89]=0.626
\end{aligned}
$$

b)
$V=\frac{4}{3} \pi X^{3}$
clearly $V \leq \frac{4}{3} \pi$ and for $0 \leq \mathrm{V}_{0} \leq \frac{4}{3} \pi$
$P\left(V>\mathrm{V}_{0}\right)=P\left(\frac{4}{3} \pi X^{3}>\mathrm{V}_{0}\right)$
$=P\left(X^{3}>\frac{3}{4} \frac{\mathrm{~V}_{0}}{\pi}\right)$
$=P\left[X>\left(\frac{3}{4} \frac{\mathrm{~V}_{0}}{\pi}\right)^{\frac{1}{3}}\right]$
$=1-F\left(\frac{3}{4} \frac{\mathrm{~V}_{0}}{\pi}\right)^{\frac{1}{3}}$
$=1-3\left(\frac{3}{4} \frac{\mathrm{~V}_{0}}{\pi}\right)^{\frac{2}{3}}+\frac{3}{2} \frac{\mathrm{~V}_{0}}{\pi}$
[1]
The above probability is zero if $\mathrm{V}_{0}>\frac{4}{3} \pi$ since X lies between 0 and 1 .
Q. 6 i)

Likelihood $\mathrm{L}(\boldsymbol{\lambda})=\frac{1}{\lambda^{n}} e^{-\sum^{x_{i} / \lambda}}$
[1]
$\log L(\lambda)=-n \log \lambda-\frac{\sum x_{i}}{\lambda}$
$\frac{\partial \log L}{0 \lambda}=0 \quad$ gives
$\hat{\lambda}=\frac{\sum x_{i}}{n}$
$\frac{\partial^{2} \log L}{\partial \lambda^{2}}=\frac{n}{\lambda^{2}}-2 \frac{\sum x_{i}}{\lambda^{3}}<0$ at $\hat{\lambda}=\bar{x}$
ii)

$$
\begin{equation*}
E(\hat{\lambda})=E\left(\frac{\sum x_{i}}{n}\right)=\lambda \tag{1}
\end{equation*}
$$

[1]
iii)
$-E\left(\frac{\partial^{2}}{\partial \lambda^{2}} \log L(\lambda)\right)=\frac{2}{\lambda^{3}} n \lambda-\frac{n}{\lambda^{2}}$
$=\frac{n}{\lambda^{2}}$
$C R L B=\frac{1}{\left(\frac{n}{\lambda^{2}}\right)}=\frac{\lambda^{2}}{n}$
iv)

$$
\begin{equation*}
\operatorname{Var}(\hat{\lambda})=V\left[\frac{\sum x_{i}}{n}\right]=\frac{1}{n^{2}} n \lambda^{2}=\frac{\lambda^{2}}{n} \tag{2}
\end{equation*}
$$

v)
$\hat{\lambda} \sim N\left(\lambda, \frac{\lambda^{2}}{n}\right)$
$\frac{\bar{x}-\lambda}{\lambda / \sqrt{n}} \sim N(0,1)$
[1]
95% confidence interval for λ is obtained as follows
$P\left[-1.96<\frac{\bar{x}-\lambda}{(\lambda / \sqrt{n})}<1.96\right]=0.95$
This gives the interval as
$\frac{\bar{x}}{1+1.96 / \sqrt{n}}, \frac{\bar{x}}{1-1.96 / \sqrt{n}}$

Q. 7 a)

seems to be approximately normal.
b)
$\bar{x}=\frac{\sum x}{n}$
$=\frac{1235}{20}$
$=61.75$
$S^{2}=\frac{\sum x^{2}-n x^{2}}{n-1}$
$=\frac{77117-\frac{1235^{2}}{20}}{19}$
$=45.04$
95\% CI is
$\bar{x} \pm t_{2 / 2} \sqrt{\frac{S^{2}}{n}}$
$61.75 \pm 2.093 \sqrt{\frac{45.04}{20}}$
Or 58.61 and 64.89
c)

Here we apply the paired t -test
Differences in pair d (before and after treatment)
d: $3 \quad 2 \begin{array}{lllllllll} & 2 & 0 & 4 & 4 & -5 & 0 & 2 & -1\end{array}$
$\begin{array}{llllllllll}2 & 0 & -1 & 1 & 4 & 2 & 1 & 3 & -5 & -1\end{array}$
$\sum \mathrm{d}=17 \quad \sum \mathrm{~d}^{2}=141$
If μ be the true mean of the difference we test $\mathrm{H}_{0}: \mu=0$ (treatment ineffective) versus $\mathrm{H}_{1}: \mu>0$ (treatment effective)
$\bar{d}=0.85 \quad \mathrm{~S}^{2}=6.66$
Under H_{0},
$t=\frac{\bar{d}-0}{S} \sqrt{20}$
$=\frac{0.85 \sqrt{20}}{\sqrt{6.66}}$
$=1.47$ with 19 d.f
5% value of t (one-tailed) for 19 df is 1.729
obs $\mathrm{t}<$ critical value $-\mathrm{H}_{0}$ holds
Treatment not effective.
Q. $8 \quad$ We apply the χ^{2} - test

Under H_{0} that the park is visited in the same proportion by birds of the six categories, the expected frequency (E) for each category is
$\frac{1}{6} * 54=9$
$\chi^{2}=\sum \frac{(0-E)^{2}}{E} \quad$ over the six cells
Calculated $\chi^{2}=7.778$ with 5 d.f
$\chi_{0.05}^{2}(5)=11.07$
Obs. Value of χ^{2} not significant H_{0} holds.
Q. 9
a) Scatter plot - Y against X - shows linear trend
b)

$$
\begin{aligned}
& \bar{X}=\frac{\sum X}{n} \\
& =\frac{50}{5} \\
& =10 \\
& \bar{Y}=\frac{\sum Y}{n} \\
& =\frac{10}{5} \\
& =2
\end{aligned}
$$

$$
\begin{align*}
& \sum X^{2}=510 \quad \sum Y^{2}=30 \quad \sum X Y=109 \\
& S_{X X}=\sum X^{2}-\frac{\left(\sum X\right)^{2}}{n} \\
& =10 \tag{2}
\end{align*}
$$

Similarly, $S_{Y Y}=10 \quad S_{X Y}=9$
$r=\frac{S_{x y}}{\sqrt{S_{x x} S_{y y}}}=0.9$
c)
$\hat{\beta}_{1}=b_{1}=\frac{S_{x y}}{S_{x x}}=0.9$
[2]
$\hat{\beta}_{0}=b_{0}=\bar{Y}-b_{1} \bar{X}=-7$
line $\overline{\mathrm{Y}}=-7+0.9 X$
d) Standard error of estimate Se is given by
$S_{e}^{2}=\frac{1}{n-s} \sum\left(Y_{i}-Y_{i}\right)^{2}$
$=\frac{1}{n-2}\left(S_{Y Y}-\frac{S_{X Y}^{2}}{S_{X X}}\right)$
$=0.6333$
$\mathrm{Se}=0.7958$
e) $\quad 95 \% \mathrm{CI}$
$b_{1} \pm t_{\alpha / 2, n-2} \sqrt{\frac{S_{e}^{2}}{S_{X X}}}$
$0.9 \pm(3.182) \sqrt{\frac{19}{30 * 10}}$
0.9 ± 0.8009
Or 0.0991 and 1.701
If e_{i} denotes the error term,
$e_{i}^{\prime} s$ are $\operatorname{IN}\left(0, \sigma^{2}\right)$
f) The above interval does not include the value zero. Hence Ho is rejected.
Q. 10 We test the hypothesis Ho that the three methods have the same mean level of productivity against H_{1} that means are not all equal.
$n_{1}=n_{2}=n_{3}=5$
$y_{1}=147 \quad y_{2}=178 \quad y_{3}=127$
$C F=\frac{452^{2}}{15}=13620.3$
$S S T=14326-13620.3=705.7$
$S S B=\frac{147^{2}+173^{2}+127^{2}}{5}-C F=264.1$
$S S E=S S T-S S B=441.6$

ANOVA Table

Source	SS	Df	MSS	F
Between methods	264.1	2	132.05	3.59
Error	441.6	12	36.8	
Total	705.7	14		

Table value $\mathrm{F}_{2,12}(0.05)=3.885$
No evidence against Ho.
Q. 11 a)
$f_{X}(x)=\int_{0}^{\infty} x e^{-x(1+y)} d y=e^{-x}$
$f_{Y}(y)=\int_{0}^{\infty} x e^{-x(1+y)} d x=\frac{1}{(1+y)^{2}}, y>0$
$\mathrm{As} \int_{0}^{\infty} \frac{y}{(1+y)^{2}}$ does not converge, $\mathrm{E}(\mathrm{Y})$ does not exist
$f(y \mid x)=\frac{f(x, y)}{f(x)}$
$=x e^{-x y}, y>0$
$E(Y \mid x)=\int_{0}^{\infty} y x e^{-x y} d y=\frac{1}{x} \quad \mathrm{x}>0$
b) i) Theory
ii) $\quad \mu_{N}=3 \quad \sigma_{\mathrm{N}}^{2}=3$
$\mu_{X}=15 * \frac{1}{3}=5$
$\sigma_{\mathrm{x}}^{2}=15 * \frac{1}{3} * \frac{2}{3}=\frac{10}{3}$
[1]
$E(S)=\mu_{N} \mu_{X}=15$
[2]
$\operatorname{Var}(\mathrm{S})=\mu_{N} \sigma_{x}^{2}+\sigma_{N}^{2} \mu_{x}^{2}$
$=85$

